SQL语句的解析顺序
1、FROM FROM后面的表标识了这条语句要查询的数据源。和一些子句如,(1-J1)笛卡尔积,(1-J2)ON过滤,(1-J3)添加外部列,所要应用的对象。FROM过程之后会生成一个虚拟表VT1。
(1-J1)笛卡尔积 这个步骤会计算两个相关联表的笛卡尔积(CROSS JOIN),生成虚拟表VT1-J1。
(1-J2)ON过滤 这个步骤基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON谓词条件的列,生成虚拟表VT1-J2。
(1-J3)添加外部行 如果使用了外连接,保留表中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。
2、WHERE 对VT1过程中生成的临时表进行过滤,满足where子句的列被插入到VT2表中。
3、GROUP BY 这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。
4、HAVING 这个子句对VT3表中的不同的组进行过滤,满足HAVING条件的子句被加入到VT4表中。
5、SELECT 这个子句对SELECT子句中的元素进行处理,生成VT5表。
(5-1)计算表达式 计算SELECT子句中的表达式,生成VT5-1
(5-2)DISTINCT 寻找VT5-1中的重复列,并删掉,生成VT5-2
(5-3)TOP 从ORDER BY子句定义的结果中,筛选出符合条件的列。生成VT5-3表
6、ORDER BY 从VT5-3中的表中,根据ORDER BY子句的条件对结果进行排序,生成VC6表。
注:HAVING子句对GROUP BY子句设置条件的方式与WHERE子句和SELECT语句交互的方式类似。WHERE子句搜索条件在进行分组操作之前应用;而HAVING搜索条件在进行分组操作之后应用。HAVING语法与WHERE语法类似,但HAVING可以包含聚合函数。HAVING子句可以引用选择列表中出现的任意项。
处理过程流程图: