知识改变命运

一点一滴,成就未来

PCA算法---实验代码完整版(实验代码+数据集下载)

简介:PCA(Principal Component Analysis)主成分分析算法,在进行图像识别以及高维度数据降维处理中有很强的应用性,算法主要通过计算选择特征值较大的特征向量来对原始数据进行线性变换。一般获取的原始数据维度都很高,比如1000个特征,在这1000个特征中可能包含了很多无用的...

2018-05-31 15:54:47

阅读数 750

评论数 0

真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)

ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程。 1.实验室硬件配置(就需要而言):    ...

2018-05-28 22:55:17

阅读数 74460

评论数 30

ubuntu 18.04/16.04/14.04 双硬盘分区方案

首先,基本配置是: 512G SDD +2T 机械  ,内存 64G大神推荐分区方案 :固态部分:1.主分区  500M   EFI分区                (用作EFI启动500M完全足够) 2.主分区  500M   /boot                  (开机程序500M完...

2018-05-28 20:55:46

阅读数 18402

评论数 6

模块无法引用,出现ModuleNotFoundError: No module named 'XXXX',解决办法!!!

将自己做的py文件放到 site_packages 目录下: site_packages 文件保存在你的pycharm的编译环境里边: 如何查找 : 1 ,首先查看自己编译器位置。 2.打开到下图这个位置 3.一般调用的相关包都保存在 lib 文件夹当中 ...

2019-03-10 00:04:51

阅读数 68

评论数 0

了解 HMM 算法

什么是HMM 模型?和马尔可夫链又有什么关系? 回答 : (1)什么是马尔科夫链?:(百度、知乎)有相关解释。 (2)什么是HMM模型? 隐马尔可夫模型(HMM)可以用五个元素来描述,包括2个状态集合和3个概率矩阵: 1. 隐含状态 S 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际...

2019-02-22 11:09:20

阅读数 49

评论数 0

机器学习的算法是如何划分的?

机器学习算法有哪些? 机器学习算法包括: 1、分层聚类,2、KNN,3、基于密度的聚类DBSCAN,4、K-means,5、自组织映射SOM,6、PCA,7、LDA,8、MDS,9、朴素贝叶斯,10、数据降维,11、神经网络,12、GMM,13、EM,14、LVQ,15、HMM,16、熵,条件...

2019-02-20 23:50:45

阅读数 47

评论数 0

如何理解机器学习?

1.大家经常会为在想,到底什么是机器学习? 机器学习相关解释: (1)使用算法解析数据,从中学习,然后对世界上的某件事情做出决定或预测 (2)从任务T ,训练过程E,模型表现 P ,机器学习过程被解释为:【为实现任务T】,通过【训练关于T的经验E】,来实现提高【模型结果P】的过程 (3)机...

2019-02-20 23:00:59

阅读数 52

评论数 0

微信公众号开通了

微信公众号 :“人工智能AI圈” 今天,博主开通了自己的微信公众号“人工智能AI圈”,目前,公众号正在初步构建阶段,有感兴趣的小伙伴可以先扫码关注! ...

2019-02-17 11:25:54

阅读数 73

评论数 0

稀疏自编码器符号一览表

下面是我们在推导sparse autoencoder时使用的符号一览表: 符号 含义 训练样本的输入特征,. 输出值/目标值. 这里  可以是向量. 在autoencoder中,. 第  个训练样本 输入为  时的假设输出,其中包含参数 . ...

2019-02-16 21:25:32

阅读数 40

评论数 0

可视化自编码器训练结果

训练完(稀疏)自编码器,我们还想把这自编码器学到的函数可视化出来,好弄明白它到底学到了什么。我们以在10×10图像(即n=100)上训练自编码器为例。在该自编码器中,每个隐藏单元i对如下关于输入的函数进行计算: 我们将要可视化的函数,就是上面这个以2D图像为输入、并由隐藏单元i计算出来的函数...

2019-02-16 21:24:03

阅读数 32

评论数 0

自编码算法与稀疏性

目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合  ,其中  。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如  。下图是一个自编码神经网络的示例。   自编...

2019-02-16 21:23:11

阅读数 69

评论数 0

梯度检验与高级优化

梯度检验与高级优化 目录 梯度检验与高级优化 梯度检验 中英文对照 梯度检验 众所周知,反向传播算法很难调试得到正确结果,尤其是当实现程序存在很多难于发现的bug时。举例来说,索引的缺位错误(off-by-one error)会导致只有部分层的权重得到训练,再比如忘记计算偏置项。这些错...

2019-02-16 21:12:26

阅读数 34

评论数 0

反向传导算法

反向传导算法 目录 反向传导算法 推导流程 中英文对照 推导流程 假设我们有一个固定样本集 ,它包含  个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 ,其代价函数为: 这是一个(二分之一的)方差代价函数。给定一个包含  个样例的数据集,我们可以定义整体代...

2019-02-16 20:33:44

阅读数 57

评论数 0

神经网络

概述 目录 概述 概述 神经网络模型 中英文对照 概述 以监督学习为例,假设我们有训练样本集  ,那么神经网络算法能够提供一种复杂且非线性的假设模型  ,它具有参数  ,可以以此参数来拟合我们的数据。 为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”...

2019-02-16 19:07:49

阅读数 35

评论数 0

初探深度学习框架之------Caffe

一、Caffe caffe 是什么? 官网的解释是这样的: Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley ...

2018-11-07 21:41:22

阅读数 103

评论数 0

D-S 证据理论

一.D-S证据理论引入 诞生: D-S证据理论的诞生:起源于20世纪60年代的哈佛大学数学家A.P. Dempster利用上、下限概率解决多值映射问题,1967年起连续发表一系列论文,标志着证据理论的正式诞生。 形成: Dempster的学生G.shafer对证据理论做了进一步发展,引入信...

2018-11-07 17:38:46

阅读数 529

评论数 1

第5章 Logistic回归

Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用...

2018-08-09 10:40:07

阅读数 127

评论数 0

第4章 基于概率论的分类方法:朴素贝叶斯

朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。 贝叶斯理论 & 条件概率 贝叶斯理论 我们现在...

2018-08-09 09:26:05

阅读数 217

评论数 0

第3章 决策树

决策树 概述 决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。 决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是 if-then 规则的集合,也可以认为是定义在特征空间与类空...

2018-08-08 11:07:05

阅读数 142

评论数 0

github上如何下载单个文件

一般情况下,在github中,需要下载整个项目时,可以点击右边的 clone or download 按钮 但是,当我们只需要某个项目当中的一个小文件时,该怎么做呢? 方法 : 找到所需下载的文件,选择RAW -》右键-》从连接另存未见为。即可下载  ...

2018-08-07 11:42:06

阅读数 5947

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭