- 博客(12)
- 资源 (3)
- 收藏
- 关注
原创 R-FCN: Object Detection via Region-based Fully Convolutional Networks
R-FCN: Object Detection via Region-based Fully Convolutional Networks背景介绍 R-CNN 系列的方法,如 SPPnet、Fast R-CNN、Faster R-CNN 等方法在 Object Detection 上取得了很大的成功。这些方法的网络结构被 RoI pooling 层分成两个子网络:共享的全卷积子网,RoI-wis
2016-07-10 22:29:20 8914
原创 SSD: Single Shot MultiBox Detector
SSD: Single Shot MultiBox Detector背景介绍 基于“Proposal + Classification” 的 Object Detection 的方法,R-CNN 系列(R-CNN、SPPnet、Fast R-CNN 以及 Faster R-CNN),取得了非常好的结果,但是在速度方面离实时效果还比较远 在提高 mAP 的同时兼顾速度
2016-07-10 15:22:01 7473 5
原创 You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection背景介绍 在深度神经网络之前,早期的 Object detection 方法是通过提取图像的一些 robust 的特征如( Haar,SIFT,HOG )等特征,使用 DPM 模型,用 silding window 的方式来预测具有较高 score 的 boundin
2016-07-09 08:27:49 9246 2
原创 Mac OS X10.10 下安装caffe
自从 Mac 10.9 将其默认编译工具改成 clang/clang++,相应的C++库改成 libc++后,在 Mac 上编译一些开源代码很容易出现 “undefined symbols for architecture x86_64” 的问题,让初学者很是困惑。但是问题的根源均来源与 对C++标准库的使用有关,只需要在编译选项中添加 "-stdlib=libstdc++" 即可。笔者尝试着在 Mac OS X10.10 下,通过源码编译 OpenCV gflags 等 成功 完成 Caffe 的配置安装
2015-02-10 20:53:47 16009 8
原创 Multi-Layer Neural Network
接触机器学习有一段时间了,但是对于神经网络一直感觉比较“神秘”,再加之深度学习的概念炒得这么热,都不好意思说自己不懂神经网络了。本文主要是为了记录自己对神经网络的理解以及一些心得,由于是一个新手,其中的一些理解不免有些错误,望各位能够指正。本文主要参考 UFLDL Tutorial的同名教程【1】,在理解过程中主要参考了博客,反向传播BP算法【2】。正如【2】所说【1】中变量的上下标比较多,理解起
2014-09-22 18:20:53 4367
原创 gcc/g++ 链接库的编译与链接
gcc/g++ 链接库的编译与链接surgewong@gmail.comhttp://blog.csdn.net/surgewong 程序编译一般需要经预处理、编译、汇编和链接几个步骤。在实际应用中,有些公共代码需要反复使用,就把这些代码编译成为“库”文件。在链接步骤中,连接器将从库文件取得所需的代码,复制到生成的可执行文件中,这种库称为静态(链接)库,其特点是可
2014-09-12 22:51:25 38796 5
原创 正则表达式基础
1.正则表达式简介正则表达式(Regular expression,简写为Regexes)是一种用来操作和检验字符串数据的强大工具。它相当与一串特殊的字符,用它可以转换成算法,对文本进行匹配等操作。 事实上正则表达式有其自身的一套语法,这种语法对于初学者来说显得有些晦涩难懂。尤其是其构造比较困难,称为很多入门者的障碍。但当掌握后却可以轻易的解决以前不容易解决的很多文本类问题,
2014-07-05 23:14:08 1684
Efficient Graph-Based Image Segmentation
2014-09-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人