用树形算法思想去使用思维导图\树形图\鱼骨图

用树形算法思想去使用思维导图\树形图\鱼骨图

在过去,我很不喜欢思维导图这种深度很高的图示。因为一旦深度提高了,那么根部和叶子部位之间或者是祖孙关系比较长的节点就会变得晦涩,就好比,虽然你很尊重你的祖先,但是可能连他怎么称呼都忘记了,但是却可以轻易记住你父亲脸上是否有颗痣。为什么会有这种不公平的对待呢?万恶之源正是关系树太深了。

正因此,很多时候我是不喜欢去用这种形如鸡肋的图来归纳我的知识库。

但我并不打算放弃他,因为他充满美感,因为他随处可见,我试图用各种方式解读他使用它。然而我找到了我认为最佳的理解方式,这个方式是我在求解二叉树问题得到的启发。

我过去就是觉得深度是它的缺点,然后我就强制自己不做深度大于3的知识总结。

每次大于3,我就会增加分支,并且建立分支索引。就是想方设法不让他变成一个大树,但是这个显然粗暴,实用性不高。

后来我想到了,正常人们思考问题的思维应该是“触发式”的,利用少量的记忆加上一些【导火索】实现“触景生情,再到潸然泪下”。

而需要实现触景生情,首先就得有丰富的阅历,也就是我们所谓的经验。

我们把这个所谓的【经验】取名为为【指标】。

然后我们开始对于每一个知识点,我们都要 找到 3个东西: 父知识点,孩子知识点,指标。

比如我们,找到某一个人,想要把这个人的子孙18代族谱翻出来,即找子孙的名字。

那么我们可以先找出这个人的名字,这个就是导火索

然后再找出这个人取名的习惯,这个习惯我们称之为指标

然后根据这个人的名字和指标生产它的孩子名字。

同样的事情迭代进行下去,你可以得到一颗看起来很深的族谱。

因为我们很容易就漏掉一两个孩子或者写错名字,但是你会发现,比起强制性记忆,你会发现它漏的更少。

如果你希望再少漏点,那你就得找到更多的指标,找到更多的经验。

你可能会说,“那我岂不是得记住很多指标?”

答案是否定的。

你要知道指标之间也存在着父子依赖关系。

那么我们就可以把问题变成“用指标的指标,找指标的孩子”。

”指标的指标“的丰富度决定了,指标的孩子的个数。

同理,根据俄罗斯套娃原理,我们可以利用找“指标的指标的儿子“提高”指标的指标"的丰富度。

只要你足够的耐心,经过几轮嵌套迭代作业,最终你就可以得到一堆看起来相当可观的数据,这比起半天憋不出一点灵感好太多了。

用玄学点的理解,就是“一生三,三生九,九生万物”,顺便说一下,三是被数学界认为比2更接近完美进制的一个数字。

二叉树的所有遍历算法(包括堆栈遍历,迭代遍历,递归遍历,寄存遍历)都是基于这个思想写出来的。
利用上下文和当前状态,生成新的上下文。再重复套娃,就可以得到最终结果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值