LeetCode Dynamic Programming 算法思想-动态规划

5Longest Palindromic Substring最长回文子串

题目描述:

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 的最大长度为1000。

示例 1:

输入: "babad"
输出: "bab"
注意: "aba"也是一个有效答案。

示例 2:

输入: "cbbd"
输出: "bb"

思路分析:

动态规划求解:

回文字符串的子串也回文,比如P[i,j](表示以i开始以j结束的子串)是回文字符串,那么P[i+1,j-1]也是回文字符串。这样最长回文子串就能分解成一系列子问题了。这样需要额外的空间O(N^2),算法复杂度也是O(N^2)。

首先定义状态方程和转移方程:

P[i,j]=true 表示子串[i,j]是回文串。P[i,j]=false 表示子串[i,j]是回文串。

显然 P[i,i]=true   

    

P[i,j] =P[i+1,j-1], if(s[i]==s[j])

P[i,j]  =false, if(s[i]!=s[j])


string longestPalindrome(string s) {  
        //动态规划,时间复杂度O(N^2),空间复杂度O(N^2)。运行时间120ms  
        int start = 0, maxLen = 1;//考虑到单字符的字符串  
        bool P[1000][1000] = {false};  
        for(int i = 0; i < s.size(); ++i){//初始化准备  
            P[i][i] = true;  
            if(i < s.size() - 1 && s[i] == s[i + 1]){  
                P[i][i+1] = true;  
                start = i;  
                maxLen = 2;  
            }      
        }  
        for(int len = 3; len <= s.size(); ++len){//子串长度  
            for(int i = 0; i <= s.size() - len; ++i){//子串起始地址  
                int j = i + len - 1;//子串结束地址  
                if(P[i+1][j-1] && s[i] == s[j]){  
                    P[i][j] = true;  
                    start = i;  
                    maxLen = len;  
                }  
            }                  
        }  
        return s.substr(start,maxLen);  
  }   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值