5. Longest Palindromic Substring最长回文子串
题目描述:
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为1000。
示例 1:
输入: "babad" 输出: "bab" 注意: "aba"也是一个有效答案。
示例 2:
输入: "cbbd" 输出: "bb"
思路分析:
动态规划求解:
回文字符串的子串也回文,比如P[i,j](表示以i开始以j结束的子串)是回文字符串,那么P[i+1,j-1]也是回文字符串。这样最长回文子串就能分解成一系列子问题了。这样需要额外的空间O(N^2),算法复杂度也是O(N^2)。
首先定义状态方程和转移方程:
P[i,j]=true 表示子串[i,j]是回文串。P[i,j]=false 表示子串[i,j]不是回文串。
显然 P[i,i]=true
P[i,j] =P[i+1,j-1], if(s[i]==s[j])
P[i,j] =false, if(s[i]!=s[j])
string longestPalindrome(string s) {
//动态规划,时间复杂度O(N^2),空间复杂度O(N^2)。运行时间120ms
int start = 0, maxLen = 1;//考虑到单字符的字符串
bool P[1000][1000] = {false};
for(int i = 0; i < s.size(); ++i){//初始化准备
P[i][i] = true;
if(i < s.size() - 1 && s[i] == s[i + 1]){
P[i][i+1] = true;
start = i;
maxLen = 2;
}
}
for(int len = 3; len <= s.size(); ++len){//子串长度
for(int i = 0; i <= s.size() - len; ++i){//子串起始地址
int j = i + len - 1;//子串结束地址
if(P[i+1][j-1] && s[i] == s[j]){
P[i][j] = true;
start = i;
maxLen = len;
}
}
}
return s.substr(start,maxLen);
}