范数

范数

有时我们需要衡量一个向量的大小。在机器学习中,我们经常使用被称为 范数(norm)的函数衡量向量大小。形式上, Lp L p 范数定义如下:

xp=(i|xi|p)1p ∥ x ∥ p = ( ∑ i | x i | p ) 1 p

其中 pRp1 p ∈ R , p ≥ 1
范数(包括 Lp 范数)是将向量映射到非负值的函数。直观上来说,向量 x 的范数衡量从原点到点 x 的距离。更严格地说,范数是满足下列性质的任意函数:
f(x)=0)=>x=0 f ( x ) = 0 ) => x = 0
f(x+y)f(x)+f(y) f ( x + y ) ≤ f ( x ) + f ( y ) (三角不等式(triangle inequality))
αR,f(αx)=|α|f(x) ∀ α ∈ R , f ( α x ) = | α | f ( x )
当 p = 2 时, L2 L 2 范数被称为 欧几里得范数(Euclidean norm)。它表示从原点出发到向量 x 确定的点的欧几里得距离。 L2 范数在机器学习中出现地十分频繁,经常简化表示为 x ∥ x ∥ ,略去了下标 2。平方 L2 L 2 范数也经常用来衡量向量的大小,可以简单地通过点积 xTx x T x 计算。平方 L2 L 2 范数在数学和计算上都比 L2 L 2 范数本身更方便。例如,平方 L2 L 2 范数对x 中每个元素的导数只取决于对应的元素,而 L2 L 2 范数对每个元素的导数却和整个向量相关。但是在很多情况下,平方 L2 L 2 范数也可能不受欢迎,因为它在原点附近增长得十分缓慢。在某些机器学习应用中,区分恰好是零的元素和非零但值很小的元素是很重要的。在这些情况下,我们转而使用在各个位置斜率相同,同时保持简单的数学形式的函数: L1 L 1 范数。 L1 L 1 范数可以简化如下:

x1i|xi| ∥ x 1 ∥ ∑ i | x i |

当机器学习问题中零和非零元素之间的差异非常重要时,通常会使用 L1 L 1 范数。每当x 中某个元素从 0 增加 ϵ,对应的 L1 L 1 范数也会增加 ϵ。有时候我们会统计向量中非零元素的个数来衡量向量的大小。有些作者将这种函数称为 “ L0 L 0 范数’’,但是这个术语在数学意义上是不对的。向量的非零元素的数目不是范数,因为对向量缩放 α 倍不会改变该向量非零元素的数目。因此, L1 L 1 范数经常作为表示非零元素数目的替代函数

另外一个经常在机器学习中出现的范数是 L L ∞ 范数,也被称为 最大范数(maxnorm)。这个范数表示向量中具有最大幅值的元素的绝对值:

x=maxi|xi| ∥ x ∥ ∞ = max i | x i |

有时候我们可能也希望衡量矩阵的大小。在深度学习中,最常见的做法是使
用 Frobenius 范数(Frobenius norm),
AF=i,jA2i,j ∥ A ∥ F = ∑ i , j A i , j 2

其类似于向量的 L2 L 2 范数。
两个向量的 点积(dot product)可以用范数来表示。具体地, xTx x T x
xTy=x2y2cosθ x T y =∥ x ∥ 2 ∥ y ∥ 2 cos ⁡ θ

其中 θ 表示 x 和 y 之间的夹角。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值