范数的概念

范数的概念

范数是一个函数,用于测量向量或矩阵的大小或长度。不同的范数在向量或矩阵上提供不同的度量方式。以下是一些常用范数的定义:

  1. ℓ 1 \ell_1 1范数(Manhattan范数):
    对于向量 x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \ldots, x_n] x=[x1,x2,,xn] ℓ 1 \ell_1 1范数定义为所有元素绝对值的和: ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|\mathbf{x}\|_1 = \sum_{i=1}^{n} |x_i| x1=i=1nxi对于矩阵 S S S ℓ 1 \ell_1 1范数是所有元素绝对值的和: ∥ S ∥ 1 = ∑ i , j ∣ S i , j ∣ \|S\|_1 = \sum_{i,j} |S_{i,j}| S1=i,jSi,j
  2. ℓ 2 \ell_2 2范数(Euclidean范数):
    对于向量 x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \ldots, x_n] x=[x1,x2,,xn] ℓ 2 \ell_2 2范数定义为所有元素平方和的平方根: ∥ x ∥ 2 = ∑ i = 1 n x i 2 \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2} x2=i=1nxi2 对于矩阵 S S S ℓ 2 \ell_2 2范数(通常称为Frobenius范数)定义为所有元素平方和的平方根: ∥ S ∥ F = ∑ i , j S i , j 2 \|S\|_F = \sqrt{\sum_{i,j} S_{i,j}^2} SF=i,jSi,j2
  3. 核范数(Nuclear norm)
    核范数用于测量矩阵的秩,对矩阵 L L L 定义为其奇异值的和: ∥ L ∥ ∗ = ∑ i σ i \|L\|_* = \sum_{i} \sigma_i L=iσi其中 σ i \sigma_i σi 是矩阵 L L L 的奇异值。

向量的 ℓ p \ell_p p 范数

对于一个向量 x = [ x 1 , x 2 , … , x n ] \mathbf{x} = [x_1, x_2, \ldots, x_n] x=[x1,x2,,xn],其 ℓ p \ell_p p 范数定义为:
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p \|\mathbf{x}\|_p = \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p} xp=(i=1nxip)1/p
其中 p p p 是一个正数,可以取任何值。常用的范数包括:

  • ℓ 1 \ell_1 1 范数 p = 1 p = 1 p=1 ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ \|\mathbf{x}\|_1 = \sum_{i=1}^{n} |x_i| x1=i=1nxi
  • ℓ 2 \ell_2 2 范数(欧几里得范数) p = 2 p = 2 p=2 ∥ x ∥ 2 = ( ∑ i = 1 n x i 2 ) 1 / 2 \|\mathbf{x}\|_2 = \left( \sum_{i=1}^{n} x_i^2 \right)^{1/2} x2=(i=1nxi2)1/2
  • ℓ ∞ \ell_\infty 范数(最大值范数) p → ∞ p \to \infty p ∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \|\mathbf{x}\|_\infty = \max_i |x_i| x=maxixi

矩阵的 ℓ p \ell_p p 范数

对于一个矩阵 A A A,我们可以定义其元素的 ℓ p \ell_p p 范数,类似于向量的定义:
∥ A ∥ p = ( ∑ i , j ∣ A i , j ∣ p ) 1 / p \|A\|_p = \left( \sum_{i,j} |A_{i,j}|^p \right)^{1/p} Ap=(i,jAi,jp)1/p
常用的矩阵范数包括:

  • 矩阵的 ℓ 1 \ell_1 1 范数 ∥ A ∥ 1 = ∑ i , j ∣ A i , j ∣ \|A\|_1 = \sum_{i,j} |A_{i,j}| A1=i,jAi,j
  • 矩阵的 ℓ 2 \ell_2 2 范数(Frobenius 范数) ∥ A ∥ F = ( ∑ i , j A i , j 2 ) 1 / 2 \|A\|_F = \left( \sum_{i,j} A_{i,j}^2 \right)^{1/2} AF=(i,jAi,j2)1/2
  • 矩阵的 ℓ ∞ \ell_\infty 范数 ∥ A ∥ ∞ = max ⁡ i , j ∣ A i , j ∣ \|A\|_\infty = \max_{i,j} |A_{i,j}| A=maxi,jAi,j

ℓ 1 \ell_1 1范数的计算

如上所述,矩阵 S S S ℓ 1 \ell_1 1范数是矩阵中所有元素绝对值的和。计算方法如下:

例子

假设我们有一个矩阵 S S S
S = [ 1 − 2 3 − 4 5 − 6 7 − 8 9 ] S = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \\ 7 & -8 & 9 \end{bmatrix} S= 147258369
我们计算它的 ℓ 1 \ell_1 1范数:
∥ S ∥ 1 = ∑ i , j ∣ S i , j ∣ = ∣ 1 ∣ + ∣ − 2 ∣ + ∣ 3 ∣ + ∣ − 4 ∣ + ∣ 5 ∣ + ∣ − 6 ∣ + ∣ 7 ∣ + ∣ − 8 ∣ + ∣ 9 ∣ \|S\|_1 = \sum_{i,j} |S_{i,j}| = |1| + |-2| + |3| + |-4| + |5| + |-6| + |7| + |-8| + |9| S1=i,jSi,j=∣1∣+2∣+∣3∣+4∣+∣5∣+6∣+∣7∣+8∣+∣9∣
具体计算步骤为:
∥ S ∥ 1 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 \|S\|_1 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 S1=1+2+3+4+5+6+7+8+9=45
因此,矩阵 S S S ℓ 1 \ell_1 1范数为45。

总结

  • 向量的 ℓ p \ell_p p 范数 通用公式为 ∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p \|\mathbf{x}\|_p = \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p} xp=(i=1nxip)1/p
  • 矩阵的 ℓ p \ell_p p 范数 通用公式为 ∥ A ∥ p = ( ∑ i , j ∣ A i , j ∣ p ) 1 / p \|A\|_p = \left( \sum_{i,j} |A_{i,j}|^p \right)^{1/p} Ap=(i,jAi,jp)1/p
  • 特定范数(如 ℓ 1 \ell_1 1 范数、 ℓ 2 \ell_2 2 范数、 ℓ ∞ \ell_\infty 范数等)是这些通用公式的特殊情况。
  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值