二叉树最大 最小深度

二叉树求最大,最小深度是二叉树很基本的问题,基本上就是简单的递归问题!

首先明确一下二叉树深度的定义:从根节点到叶子节点的深度

二叉树的节点无外乎三种状态:

   1.左右子树皆存在

   2.为叶子节点,左右子树皆为null

   3.另外一种就是一个子树为null,另一个非空。


二叉树其实就是递归遍历的思想,首先想递归结束的条件,大部分时间都是叶子节点(此时下一级左右子树为null)

此时递归函数应该怎么做,return 0 (or else);另外当二叉树为空树时间,返回值应该为多少;

然后开始设计算法,并手动运行一下看是否可行。

比如最小子树,一个子树为空,另一个非空,就需要考虑

最小深度

当节点为null时间,return 0;

当节点一个子树为空,一个非空时间,非空的那边子树不用参与比较(直接置为最大IN),

当左右皆存在,就很明显,求min+1

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int minDepth(TreeNode root) {
         if(root==null)//when root is null,return 0
           return 0;
         else{
          return minRec(root);
         }
    }  
      
    private int minRec(TreeNode root) {  
      if (root.left == null && root.right == null)//when node is leaf,return 1
         return 1;	 
       else  
        {  
            if(root.left == null)  
            {  
                return minRec(root.right) + 1;  
            }  
            else if(root.right == null)  
            {  
                return minRec(root.left) + 1;  
            }  
            else  
            {  
                int left = minRec(root.left);  
                int right = minRec(root.right);  
                return (left<right?left:right) + 1;  
            }  
        }  
    }
}

最大深度:

最大深度就要简单的多,因为此时空树置为0,不会影响递归max+1的结果。

所以你可以看到return 0是必须的,当求最小时间要格外注意。


public class MaxDepth {
    public int maxDepth(TreeNode root) {
        if(root==null)
		 return 0;
		else{
         int l=maxDepth(root.left);
		 int r=maxDepth(root.right);
		 return Math.max(l,r)+1;
     
     }	 
    }
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值