二叉树求最大,最小深度是二叉树很基本的问题,基本上就是简单的递归问题!
首先明确一下二叉树深度的定义:从根节点到叶子节点的深度
二叉树的节点无外乎三种状态:
1.左右子树皆存在
2.为叶子节点,左右子树皆为null
3.另外一种就是一个子树为null,另一个非空。
二叉树其实就是递归遍历的思想,首先想递归结束的条件,大部分时间都是叶子节点(此时下一级左右子树为null)
此时递归函数应该怎么做,return 0 (or else);另外当二叉树为空树时间,返回值应该为多少;
然后开始设计算法,并手动运行一下看是否可行。
比如最小子树,一个子树为空,另一个非空,就需要考虑
最小深度:
当节点为null时间,return 0;
当节点一个子树为空,一个非空时间,非空的那边子树不用参与比较(直接置为最大IN),
当左右皆存在,就很明显,求min+1
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int minDepth(TreeNode root) {
if(root==null)//when root is null,return 0
return 0;
else{
return minRec(root);
}
}
private int minRec(TreeNode root) {
if (root.left == null && root.right == null)//when node is leaf,return 1
return 1;
else
{
if(root.left == null)
{
return minRec(root.right) + 1;
}
else if(root.right == null)
{
return minRec(root.left) + 1;
}
else
{
int left = minRec(root.left);
int right = minRec(root.right);
return (left<right?left:right) + 1;
}
}
}
}
最大深度:
最大深度就要简单的多,因为此时空树置为0,不会影响递归max+1的结果。
所以你可以看到return 0是必须的,当求最小时间要格外注意。
public class MaxDepth {
public int maxDepth(TreeNode root) {
if(root==null)
return 0;
else{
int l=maxDepth(root.left);
int r=maxDepth(root.right);
return Math.max(l,r)+1;
}
}
}