c++版矩阵基本操作,行列式,逆(不限矩阵大小)

这篇博客主要介绍了使用C++进行矩阵操作,包括利用高斯消去法计算行列式以及通过LU分解求解矩阵逆。作者对比了C++实现与Python库的效率,表明两者结果一致,暗示Python库可能也采用LU分解。文中并未涉及稀疏矩阵的处理,这部分内容将在后续章节讨论。
摘要由CSDN通过智能技术生成

原本是为了编程实现线性回归的,想想,里面太多矩阵操作,尤其是求逆。以前学数值分析时,也用到过列主元高斯消去求解线性方程组,LU分解求解线性方程组。这次,同样是用高斯消去法求矩阵行列式的值,用LU分解求解矩阵的逆,效率上程序执行起来还行,比用python跑一边速度快,结果一致,这也潜在说明python库中矩阵求逆的实现应该也是用的LU分解。至于矩阵的其他一些操作,基本上算简单,当然面的稀疏性矩阵的话,采用三元组的形式表示,运算起来会更好,但这里不考虑,可以放到数据结构数组的表示方式那一章中。下面给出c++实现的代码

#include <iostream>
#include <stdlib.h>
#include <string>
#include <math.h>
#include "loadData.h"
#include <fstream>
#include <sstream>
#include <stack>
using namespace std;
#define MAX_SIZE_OF_TRAINING_SET 100
#define MAX_NUMIT 100
#define ATTR_NUM 3
#define MAX 1000000
#define MIN -100000
#define MAX_MATRIX_COL 1000
#define MAX_MATRIX_ROW 100
class Matrix
{
public:
    double **mat;
    int col,row;
public:
    int loadMatrix(Matrix *matrix,dataToMatrix dtm)
    {
        int i,j;
        Data *p;
        p=dtm.dataSet->next;
        matrix->mat=(double **)malloc(sizeof(double*)*dtm.col);
        for(i=0; i<dtm.col&&p!=NULL; i++)
        {
            matrix->mat[i]=(double *)malloc(sizeof(double)*dtm.row);
            for(j=0; j<dtm.row; j++)
            {
                matrix->mat[i][j]=p->attr_double[j];
            }
            p=p->next;
        }
        matrix->row=dtm.row;
        matrix->col=dtm.col;
        return 0;
    }
    int initMatrix(Matrix *matrix,int col,int row)
    {
        matrix->col=col;
        matrix->row=row;
        matrix->mat=(double **)malloc(sizeof(double*)*col);
        int i=0,j=0;
        for(i=0; i<col; i++)
        {
            matrix->mat[i]=(double *)malloc(sizeof(double)*row);
            for(j=0; j<row; j++)
                matrix->mat[i][j]=0;
        }
        return 0;
    }
    int initMatrix(Matrix *matrix,int col,int row,double lam)
    {
        matrix->col=col;
        matrix->row=row;
        matrix->mat=(double **)malloc(sizeof(double*)*col);
        int i=0,j=0;
        for(i=0; i<col; i++)
        {
            matrix->mat[i]=(double *)malloc(sizeof(double)*row);
            for(j=0; j<row; j++)
            {
                matrix->mat[i][j]=0;
                if(i==j)
                matrix->mat[i][j]=lam;
            }
        }
        return 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值