中国剩余定理的题目,用扩展欧几里得算法去实现,木有什么特别的吧!!!
今天感觉打同余定理的知识点好打多了吧!!也基本有个理解了,总结一下扩展欧几里得和线性同余方程。
扩展欧几里得算法的思想和欧几里得算法一样,都是求最大公约数。不过这个在求最大公约数的时候还要求出满足等式的X0和Y0;
代码:
void exgcd(ll a,ll b,ll &d,ll &x,ll &y) //求出一组解想X,Y;
{
if(b == 0)
{
x=1;y=0;d=a;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
同余方程就是利用扩展欧几里得算法去解方程。
因为题目给出的a1=X(mod b1),中a和b的组数可能会比较多,所以要一次求解并保存结果。
选俩组可改成方程:a1*X+a2*Y=b2-b1;
代码:
for(i=2;i<=m;i++)
{
a=q[1];b=q[i];
c=w[i]-w[1];
exgcd(a,b,d,x0,y0); //求出最大公约数d,和函数a1*X+a2*Y=0的解x0;
if(c%d != 0) //判断是否整除,不满足及无解。
{
cot=0;break;
}
n=b/d;
x0=(x0*(c/d)%n+n)%n; //求右边为c=w[i]-w[1]时的解。
w[1]=q[1]*x0+w[1]; //更新w[1]和q[1];
q[1]=q[1]*(q[i]/d);
//cout<<x0<<' '<<w[1]<<' '<<q[1]<<endl;
}
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
typedef __int64 ll;
using namespace std;
ll gcd(ll a,ll b)
{
return b == 0?a:gcd(b,a%b);
}
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(b == 0)
{
x=1;y=0;d=a;
}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main()
{
ll q[8],w[8];
ll n,a,b,c,d,x0,y0,lcm;
int t,m,ant=1,i,ans;
scanf("%d",&t);
while(t--)
{
lcm=1;
cin>>m;
bool cot=1;
for(i=1;i<=m;i++)
{
cin>>q[i];
lcm=lcm/gcd(q[i],lcm)*q[i];
}
for(i=1;i<=m;i++) cin>>w[i];
for(i=2;i<=m;i++)
{
a=q[1];b=q[i];
c=w[i]-w[1];
exgcd(a,b,d,x0,y0);
//cout<<d<<' '<<x0<<' '<<y0<<endl;
if(c%d != 0)
{
cot=0;break;
}
n=b/d;
x0=(x0*(c/d)%n+n)%n;
w[1]=q[1]*x0+w[1];
q[1]=q[1]*(q[i]/d);
//cout<<x0<<' '<<w[1]<<' '<<q[1]<<endl;
}
printf("Case %d: ",ant++);
if( cot == 0)
{
printf("-1\n");continue;
}
if(w[1] != 0)
{
cout<<w[1]<<endl; continue;
}
cout<<lcm<<endl;
}
return 0;
}
路途中。。。。