HDU 3579 (Hello Kiki)


中国剩余定理的题目,用扩展欧几里得算法去实现,木有什么特别的吧!!!

今天感觉打同余定理的知识点好打多了吧!!也基本有个理解了,总结一下扩展欧几里得和线性同余方程。

扩展欧几里得算法的思想和欧几里得算法一样,都是求最大公约数。不过这个在求最大公约数的时候还要求出满足等式的X0和Y0;

代码:

void exgcd(ll a,ll b,ll &d,ll &x,ll &y) //求出一组解想X,Y;
{
    if(b == 0)
    {
        x=1;y=0;d=a;
    }
    else
    {
        exgcd(b,a%b,d,y,x);
        y-=x*(a/b);  
    }
}
同余方程就是利用扩展欧几里得算法去解方程。

因为题目给出的a1=X(mod b1),中a和b的组数可能会比较多,所以要一次求解并保存结果。

选俩组可改成方程:a1*X+a2*Y=b2-b1;

代码:

for(i=2;i<=m;i++)
        {
            a=q[1];b=q[i];
            c=w[i]-w[1];
            exgcd(a,b,d,x0,y0);  //求出最大公约数d,和函数a1*X+a2*Y=0的解x0;
            if(c%d != 0)  //判断是否整除,不满足及无解。
            {
                cot=0;break;
            }
            n=b/d; 
            x0=(x0*(c/d)%n+n)%n; //求右边为c=w[i]-w[1]时的解。
            w[1]=q[1]*x0+w[1];  //更新w[1]和q[1];
            q[1]=q[1]*(q[i]/d);
            //cout<<x0<<' '<<w[1]<<' '<<q[1]<<endl;
        }


AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
typedef __int64 ll;
using namespace std;
ll gcd(ll a,ll b)
{
    return b == 0?a:gcd(b,a%b);
}

void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
    if(b == 0)
    {
        x=1;y=0;d=a;
    }
    else
    {
        exgcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}

int main()
{
    ll q[8],w[8];
    ll n,a,b,c,d,x0,y0,lcm;
    int t,m,ant=1,i,ans;
    scanf("%d",&t);
    while(t--)
    {
        lcm=1;
        cin>>m;
        bool cot=1;
        for(i=1;i<=m;i++)
        {
            cin>>q[i];
            lcm=lcm/gcd(q[i],lcm)*q[i];
        }
        for(i=1;i<=m;i++)  cin>>w[i];
        for(i=2;i<=m;i++)
        {
            a=q[1];b=q[i];
            c=w[i]-w[1];
            exgcd(a,b,d,x0,y0);
            //cout<<d<<' '<<x0<<' '<<y0<<endl;
            if(c%d != 0)
            {
                cot=0;break;
            }
            n=b/d;
            x0=(x0*(c/d)%n+n)%n;
            w[1]=q[1]*x0+w[1];
            q[1]=q[1]*(q[i]/d);
            //cout<<x0<<' '<<w[1]<<' '<<q[1]<<endl;
        }

        printf("Case %d: ",ant++);
        if( cot == 0)
        {
            printf("-1\n");continue;
        }
        if(w[1] != 0)
        {
            cout<<w[1]<<endl; continue;
        }
        cout<<lcm<<endl;
    }
    return 0;
}

路途中。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值