DATAV可视化基本操作

一、实现功能

使用阿里云DATAV实现炫酷的数据展示,通过创建静态或者动态数据,使用DATAV提供的模板,实现数据炫酷精确的展示。

二、实现步骤

1.购买阿里云DAVAV服务,自己使用购买51rmb/年足够。

2.创建mysql数据源(首先mysql要有对应数据)

(1)进入阿里云的DATAV界面

https://datav.aliyun.com/data

(2)添加数据源

(3)编辑数据

类型:兼容MySQL数据库

域名:公网域名,可以购买阿里云服务器

端口:mysql是3306

3.动态数据可视化

(1)新建可视化

(2)选择模板,并且命名

(3)选择组件,修改其对应数据源为上一步创建的数据源(基本饼图组件)

(4)填写mysql语句,并且将结果写入x和y字段对应的映射中

(之后即可动态显示数据结果)

 

 

 

Iris数据集是一种常用的多维数据集,常用于机器学习入门示例,特别是用于展示聚类和分类算法的效果。在Python中,我们可以使用matplotlib和seaborn等数据可视化库对iris.data进行多种图表的绘制。下面是一些常见的可视化操作: 1. **散点图**:使用花瓣长度(petal length)和宽度(petal width)作为x轴和y轴,颜色编码种类(setosa, versicolor, virginica),可以用`plt.scatter`函数。 ```python import matplotlib.pyplot as plt iris = pd.read_csv('iris.data', header=None) plt.scatter(iris.iloc[:, 2], iris.iloc[:, 3], c=iris.iloc[:, 0]) plt.xlabel('Petal Length') plt.ylabel('Petal Width') plt.title('Iris Scatter Plot by Species') plt.show() ``` 2. **箱线图**:展示每种花各维度的分布情况,可以用`sns.boxplot`函数。 ```python import seaborn as sns sns.boxplot(x=iris.iloc[:, 0], y=iris.iloc[:, [2, 3]], hue=iris.iloc[:, 0]) plt.xlabel('Species') plt.ylabel('Petal Dimensions') plt.title('Iris Boxplots by Species') plt.show() ``` 3. **直方图**:了解每列数值特征的分布,可以用`sns.histplot`。 ```python sns.histplot(data=iris, x=range(4), element="step", hue=iris.iloc[:, 0]) plt.xlabel('Feature Index') plt.ylabel('Frequency') plt.title('Iris Histograms by Feature and Species') plt.show() ``` 4. **热力图**:如果想看两列特征间的相关性,可以用`corr()`函数配合`heatmap`。 ```python correlation_matrix = iris.corr() sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Matrix of Iris Features') plt.show() ``` 以上操作会帮助你理解数据的基本特性,并可能启发后续的建模决策。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值