解决问题的方法和途径-问题分析

我们讲解决问题的时候应该多问几个为什么,这就可以看做是问题分析的过程,问题定义的目的是搞清楚问题是什么以及我们的期望和现实的差距。而问题分析的重点则在于搞清楚问题是如何产生的,为什么会存在该问题,问题的根源是什么?我们平时往往忽视了问题的分析,则我们解决问题针对的是问题的定义和问题的表象,那么解决方法都是一种应急方法,是治标不治本的方法。而当我们针对问题的根源制定的解决方法,则是一种避免问题重复产生的长远治本的方法,是我们持续改进的必要方法。

跳过分析阶段解决问题没有治本,我们往往采用了一种规避的方法来临时的解决了问题,而没有去探寻问题的根源。比如一条路不好走了我们会换一条路,一种方法不好用了我们会换一种方法,但我们却很少去思考为什么路不好走和方法不好用了?是什么原因导致了我们现在的问题,在问题的背后究竟隐藏着什么?对于这些我们往往很难回答,我们采用的规避问题本身的方法其实质是没有解决问题,因此这种方式也就谈不上对我们分析和解决问题的技能有所提高。

问题分析有结构化分析方法和非结构化的分析方法,结构化分析方法强调的是进行全面的调查研究和分析,了解清楚问题产生的整个流程和问题的逐层分析,这样势必会需要大量的调查研究和分析时间。非结构化方法则强调的是根据我们以往的经验积累,先假设问题可能产生的原因和根源,再收集数据来论证自己的观点,当我们有大量的历史经验积累的时候,这种非结构化的方式往往更加有用和高效。

对于问题的分析,重点就是问题产生的流程分析,另外就是问题本身通过问题树或逻辑树的分解(5W1H分析法)。流程分析有利于我们找到问题的根源,问题分解有利于我们利于2/8原则关注问题的关键改进点。在整个过程中我们还可能借助头脑风暴和鱼骨图发散思维(因果分析法),通过亲和图对问题进行归类分析(问题归类法),通过帕累托图找寻我们应该关注的关键点(重点分析法)。这些都是常用的方法,对于问题分析阶段的方法和模式,麦肯锡公司除提出有解决问题七步法外,也提出了整个问题分析基础框架,如下:

解决问题的方法和途径-问题分析-序篇


整个问题分析框架偏企业战略咨询和流程咨询,但我们仍然可以借鉴这个分析框架和思路。整个问题分析的流程都应该围绕问题是如何产生和是谁的问题而展开,展开的方式可以是通过问题本身的分解,也可以是通过活动和流程分析。这个搞清楚了问题的解决措施和我们的行动计划才是对症下药,才可能既治标也治本。

最好还必须强调的是问题的产生不是一个孤立的事件,而是处于一个动态的环境中产生的,因此系统思维和系统分析法是我们在问题分析中要必须注意的。我们经常出现的就是单纯的孤立片面的看待某一个问题或某一指标,而没有去关注各要素之间的相互影响和作用,这造成了旧问题解决后又导致了其他新问题的产生,或者说从整个大环境和大目标来看并没有得到最满意的解决方案。


分析问题是整个问题管理中最重要的环境,如果一个人仅仅是解决问题能力强,那只能够说能够很好的应对现在。如果分析能力也很强,那就能很好的做好自我持续改进以应对未来。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值