功率因数与谐波

我的专业是电气工程(目前已接近转行),但实际上我对电气知识也是一知半解,知道最近我才较详细了解功率因数在非正弦波形下的表示。

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率视在功率的比值,即cosΦ=P/S.其实这里的功率因数只是位移功率因数PF d,定义为:

                                                               å¬å¼1  (1)

上述公式功率因数只有在电压和电流都为正弦波的时候适用,及只有发生了电压电流相移时可以。当电流波形发生了畸变,不是正弦波就需要考虑谐波的影响,实际生活中也大多是这样的波形(计算机,打印机,复印机和用于荧光灯的LED驱动器)。在使用二极管桥式整流器时,当输入电压高于直流总线电压时,二极管仅在周期的一部分内导通,这会引入使功率信号失真的谐波。

如上所述,真正的功率因数不仅仅包括位移功率因数。它实际上表示为位移功率因数和失真功率因数的乘积:

                                                                                PFT = PFD x DPF                                     (2)

失真功率因数是由谐波引入。

                                                                 çº¯çµå®¹å¨ç波形å¾

无功功率在波形上是瞬时电压电流的乘积小于0,在(1)中我们只考虑了基波电压和基波电流对功率因数的影响。

此时我们需要引入THD(总谐波畸变率),THD可以与电流谐波或电压谐波相关,它被定义为总谐波与基频频率的比率乘以100%。

{\ displaystyle {\ mathit {THD_ {V}}} = {\ frac {\ sqrt {V_ {2} ^ {2} + V_ {3} ^ {2} + V_ {4} ^ {2} + \ cdots + V_ {n} ^ {2}}} {V_ {1}}} \ cdot 100 \%= {\ frac {\ sqrt {\ sum _ {k \ mathop {=} 2} ^ {n} V_ {k } ^ {2}}} {V_ {1}}} \ cdot 100 \%}

{\ displaystyle {THD_ {I}} = {\ frac {\ sqrt {I_ {2} ^ {2} + I_ {3} ^ {2} + I_ {4} ^ {2} + \ cdots + I_ {n } ^ {2}}} {I_ {1}}} \ cdot 100 \%= {\ frac {\ sqrt {\ sum _ {k \ mathop {=} 2} ^ {n} I_ {k} ^ {2 {} {1}}} \ cdot 100 \%}

其中V n是的RMS电压n次谐波,In是的RMS电流n次谐波,当n  = 1为基频。

真功率因数可以表示平均实际功率与RMS电压和电流幅度之间的比率 {\ displaystyle pf_ {true} = {\ frac {P_ {avg}} {V_ {rms} I_ {rms}}}}

  {\ displaystyle {V_ {rms}} = V_ {1,rms} {\ sqrt {1+ \ left({\ frac {THD_ {V}} {100}} \ right)^ {2}}}}

{\ displaystyle {I_ {rms}} = I_ {1,rms} {\ sqrt {1+ \ left({\ frac {THD_ {I}} {100}} \ right)^ {2}}}}

将其替换为真功率因数的等式,很明显,可以被认为具有两个分量,其中一个是传统的功率因数(忽略谐波的影响),其中一个是谐波对谐波的影响。功率因数:

{\ displaystyle {pf_ {true}} = {\ frac {P_ {avg}} {V_ {1,rms} I_ {1,rms}}} \ cdot {\ frac {1} {​{\ sqrt {1+ \ left({\ frac {THD_ {V}} {100}} \ right)^ {2}}} {\ sqrt {1+ \ left({\ frac {THD_ {I}} {100}} \ right)^ {2}}}}}}

名称分配给两个不同的因素,如下所示:

{\ displaystyle pf_ {true} = pf_ {disp} \ cdot pf_ {dist},}

这里 {\ displaystyle pf_ {disp}} 是位移功率因数和 {\ displaystyle pf_ {dist}} 是失真功率因数(即谐波对总功率因数的贡献)。

其中,最重要的是计算有功功率、无功功率时需在同一频率下考虑。

本章到此结束,有误欢迎指出。

推荐文章:

  1. W. Grady and R. Gilleskie, “Harmonics And How They Relate To Power Factor,” Proc. of the EPRI Power Quality Issues & Opportunities Conference (PQA’93), San Diego, CA (1993).

本文主要参考:

维基百科_谐波

https://www.motioncontrolonline.org/content-detail.cfm/Motion-Control-Technical-Features/Understanding-Power-Factor-and-Harmonics/content_id/1545

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值