网络流24题之T12 软件补丁问题

2 篇文章 0 订阅
1 篇文章 0 订阅

这题虽然是网络流24题中的,但是做完发现是一个可以多次经过一个点的SPFA算法(也就是变种啦)。

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <cstring>
using namespace std ;
const int oo=1000000000;

int n,m;
typedef struct CODE{
    int b1,b2;
    int f1,f2;
    int times;
    CODE (){
        b1=b2=f1=f2=0;
    }
}C;
C a[110];
int dist[1<<21],q[100001],inq[1<<21];
int S,T;
void init (){
    freopen ("prog812.in","r",stdin);
    freopen ("prog812.out","w",stdout);
    cin >>n >>m;
    S=(1<<n)-1;
    T=0;
    int i,j;
    char k;
    for (i=1;i<=m;i++){
        scanf ("%d ",&j);
        a[i].times=j;
        j=-1;
        while (1){
            scanf ("%c",&k);
            if (k==' ') continue;
            if (k=='\n') break;
            j++;
            if (j<n){
                if (k=='-') a[i].b2|=(1<<j);
                if (k=='+') a[i].b1|=(1<<j);
            }
            else {
                if (k=='+') a[i].f2|=(1<<(j-n));
                if (k=='-') a[i].f1|=(1<<(j-n));
            }
        }
    }
}
bool check (int now,int id){
    if((now | a[id].b1) != now) return false;
    if(now & a[id].b2) return false;
    return true;
}
void spfa (){
    int now,i,next;
    int head=0,tail=0;
    for (i=0;i<=S;i++) dist[i]=oo;
    q[tail++]=S;
    dist[S]=0;
    inq[S]=1;
    while (head!=tail){
        now=q[head++];
        inq[now]=0;
        if (head==100000) head=0;
        for (i=1;i<=m;i++){
            if (check (now,i)) {
                next=(now & (~a[i].f1)) | a[i].f2;
                if (dist[next]>dist[now]+a[i].times){
                    dist[next]=dist[now]+a[i].times;
                    if (!inq[next]){
                        q[tail++]=next;
                        if (tail==100000) tail=0;
                        inq[next]=1;
                    }
                }
            }
        }
    }
    if (dist[T]==oo) printf ("0\n");
    else printf ("%d\n",dist[T]);
}
int main (){
    init ();
    spfa ();
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值