【动态规划】0-1背包问题

Description
     
 

解0-1背包问题

 
     
Input
     
 
第一行是物品数量n和背包总容量C
第二行是n件物品的价值
第三行是n件物品的重量
 
     
Output
     
 
输出背包的最大价值
 
     
Sample Input
     
 
5 10
6 3 5 4 6
2 2 6 5 4
 
     
Sample Output

     
 
15
#include<iostream>  
using namespace std;
#define N 100
int v[N];
int w[N];
int m[N][N];
int flag[N];
  
int main()  
{  
	int n,c,i,j,max;
	while(cin>>n>>c)
	{
		for(i=1;i<=n;i++)
			cin>>v[i];
		for(i=1;i<=n;i++)
			cin>>w[i];
		for(i=0;i<=c;i++)
			flag[i]=i;//用于记录相应每一列剩下的背包容量
		for(j=0;j<=c;j++)//初始化最后一行
		{
			if(j>=w[n])
			{
				m[n][j]=v[n];
				flag[j]=flag[j]-w[n];
			}
			else
				m[n][j]=0;
		}
		for(i=n-1;i>=1;i--)
		{
			for(j=0;j<=c;j++)
			{
				if(flag[j]>=w[i])
				{
					if(m[i+1][j]>(m[i+1][j]+v[i]))
						m[i][j]=m[i+1][j];//第i个物体没有被加入背包
					else
					{
						m[i][j]=m[i+1][j]+v[i];//第i个物体加入了背包
						flag[j]=flag[j]-w[i];//相应地,把该列的背包所剩容量减去第i个物体的重量
					}
				}
				else
					m[i][j]=m[i+1][j];
			}
		}
		max=m[1][0];
		for(j=1;j<=c;j++)
		{
			if(m[1][j]>max)
				max=m[1][j];
		}
		cout<<max<<endl;
	}
	return 0;  
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值