- 博客(6)
- 资源 (11)
- 收藏
- 关注
原创 传统机器学习算法和非传统机器学习
总的来说,传统机器学习算法和非传统机器学习算法的主要区别在于其基础理论和算法设计上的不同,以及应用领域和解决问题的特点不同。在选择算法时需要考虑数据类型、数据规模、模型准确性、训练速度、可解释性等方面的要求,综合考虑选择最适合的算法。综上所述,传统机器学习算法和非传统机器学习算法各有优劣,需要根据具体应用场景和问题特点进行选择和权衡。
2023-04-14 13:56:36 1117
原创 1.3 机器学习基础-常见函数及优化算法
但是,Sigmoid函数在输入值比较大或比较小时,梯度会变得非常小,从而导致梯度消失的问题,因此在较深的网络中很少使用。汉明损失函数是一种多标签分类问题中的损失函数,它衡量模型预测结果与真实结果之间的汉明距离(即模型预测的标签和真实标签不相同的数量)。Swish函数在ReLU函数的基础上加入了sigmoid函数的非线性特性,其表现优于ReLU函数,但是计算代价稍大。优化算法是深度学习训练过程中至关重要的一部分,它的作用是通过调整模型参数来最小化损失函数,从而达到训练模型的目的。
2023-04-11 14:25:42 400
原创 1.2 机器学习基础-常见的算法
它由生成器和判别器两个部分组成,生成器用于生成数据,判别器用于判断生成的数据与真实数据之间的区别,两个部分通过训练相互博弈来优化模型,生成更加真实的数据。它通过建立多层的神经网络,每一层通过学习数据的分布来提取特征,从而能够自动学习数据的特征表示,提高了模型的泛化能力。监督学习算法使用带标签的数据进行训练,目标是学习输入与输出之间的映射关系,从而得到一个能够对新数据进行预测的模型。无监督学习算法使用无标签的数据进行训练,目标是从数据中发现隐藏的结构和模式,例如数据聚类、降维等。
2023-04-11 11:31:13 124 1
原创 1.1 机器学习基础-常见深度学习框架
深度学习是一种基于神经网络的机器学习算法,它可以自动学习特征,并用于各种任务,例如图像识别、语音识别、自然语言处理等。深度学习框架是实现深度学习算法的重要工具,常见的框架包括TensorFlow、PyTorch、Keras和Caffe等。选择合适的框架可以帮助用户更加高效地构建和训练模型,提高模型的性能和效率。
2023-04-11 10:44:48 290 1
以太坊geth window 64 安装包下载
2019-08-06
js验证框架
2014-09-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人