讲KMP算法的两篇博文

 KMP算法

        在介绍KMP算法之前,先介绍一下BF算法。

一.BF算法

    BF算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串P的第一个字符进行匹配,若相等,则继续比较S的第二个字符和P的第二个字符;若不相等,则比较S的第二个字符和P的第一个字符,依次比较下去,直到得出最后的匹配结果。

    举例说明:

    S:  ababcababa

    P:  ababa

  BF算法匹配的步骤如下

           i=0                                   i=1                             i=2                         i=3                          i=4

  第一趟:ababcababa         第二趟:ababcababa      第三趟:ababcababa    第四趟:ababcababa    第五趟:ababcababa

             ababa                            ababa                          ababa                        ababa                       ababa

            j=0                                   j=1                            j=2                         j=3                         j=4(i和j回溯)

 

              i=1                                 i=2                           i=3                            i=4                        i=3

 第六趟:ababcababa         第七趟:ababcababa       第八趟:ababcababa     第九趟:ababcababa   第十趟:ababcababa

              ababa                              ababa                           ababa                        ababa                        ababa

             j=0                                  j=0                           j=1                           j=2(i和j回溯)            j=0

 

              i=4                                    i=5                          i=6                           i=7                          i=8

第十一趟:ababcababa       第十二趟:ababcababa    第十三趟:ababcababa   第十四趟:ababcababa   第十五趟:ababcababa

                     ababa                               ababa                           ababa                          ababa                          ababa

               j=0                                    j=0                         j=1                            j=2                         j=3

 

                    i=9

第十六趟:ababcababa

                       ababa

                    j=4(匹配成功)

代码实现:

复制代码
int BFMatch(char *s,char *p)
{
    int i,j;
    i=0;
    while(i<strlen(s))
    {
        j=0;
        while(s[i]==p[j]&&j<strlen(p))
        {
            i++;
            j++;
        }
        if(j==strlen(p))
            return i-strlen(p);
        i=i-j+1;                //指针i回溯
    }
    return -1;    
}
复制代码
    其实在上面的匹配过程中,有很多比较是多余的。在第五趟匹配失败的时候,在第六趟,i可以保持不变,j值为2。因为在前面匹配的过程中,对于串S,已知s0s1s2s3=p0p1p2p3,又因为p0!=p1!,所以第六趟的匹配是多余的。又由于p0==p2,p1==p3,所以第七趟和第八趟的匹配也是多余的。在KMP算法中就省略了这些多余的匹配。

二.KMP算法

    KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。

  在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。

  对于next[]数组的定义如下:

 1) next[j] = -1  j = 0

 2) next[j] = max(k): 0<k<j   P[0...k-1]=P[j-k,j-1]

 3) next[j] = 0  其他

 如:

 P      a    b   a    b   a

 j      0    1   2    3   4

 next    -1   0   0    1   2

 即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]

 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

代码实现如下:

复制代码
int KMPMatch(char *s,char *p)
{
    int next[100];
    int i,j;
    i=0;
    j=0;
    getNext(p,next);
    while(i<strlen(s))
    {
        if(j==-1||s[i]==p[j])
        {
            i++;
            j++;
        }
        else
        {
            j=next[j];       //消除了指针i的回溯
        }
        if(j==strlen(p))
            return i-strlen(p);
    }
    return -1;
}
复制代码

  因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。 

1.按照递推的思想:

   根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]

   1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;

   2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。

   因此可以这样去实现:

复制代码
void getNext(char *p,int *next)
{
    int j,k;
    next[0]=-1;
    j=0;
    k=-1;
    while(j<strlen(p)-1)
    {
        if(k==-1||p[j]==p[k])    //匹配的情况下,p[j]==p[k]
        {
            j++;
            k++;
            next[j]=k;
        }
        else                   //p[j]!=p[k]
            k=next[k];
    }
}
复制代码
 
   2.直接求解方法
复制代码
void getNext(char *p,int *next)
{
    int i,j,temp;
    for(i=0;i<strlen(p);i++)
    {
        if(i==0)
        {
            next[i]=-1;     //next[0]=-1
        }
        else if(i==1) 
        {
            next[i]=0;      //next[1]=0
        }
        else
        {
            temp=i-1;
            for(j=temp;j>0;j--)
            {
                if(equals(p,i,j))
                {
                    next[i]=j;   //找到最大的k值
                    break;
                }
            }
            if(j==0)
                next[i]=0;
        }
    }
}

bool equals(char *p,int i,int j)     //判断p[0...j-1]与p[i-j...i-1]是否相等  
{
    int k=0;
    int s=i-j;
    for(;k<=j-1&&s<=i-1;k++,s++)
    {
        if(p[k]!=p[s])
            return false;
    }
    return true;
}
复制代码

二、KMP算法详解

    如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段。

    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”
    解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。
    之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。
    个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。

    假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B = a b a b a c b
    j = 1 2 3 4 5 6 7


    此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
    再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    由于P[5]=3,因此新的j=3:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =         a b a b a c b
    j =         1 2 3 4 5 6 7


    这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =             a b a b a c b
    j =             1 2 3 4 5 6 7


    现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =               a b a b a c b
    j =             0 1 2 3 4 5 6 7


    终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
    这个过程的代码很短(真的很短),我们在这里给出:

j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
      writeln('Pattern occurs with shift ',i-m);
      j:=P[j];
   end;
end;


    最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
    这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环
。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

    现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
    为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
    预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],…,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

        1 2 3 4 5 6 7
    B = a b a b a c b
    P = 0 0 1 2 3 ?


    P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
    怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;


    最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

    串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。

    昨天发现一个特别晕的事,知道怎么去掉BitComet的广告吗?把界面语言设成英文就行了。
    还有,金山词霸和Dr.eye都可以去自杀了,Babylon素王道。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值