BoCong-Deng
码龄5年
  • 1,846,974
    被访问
  • 210
    原创
  • 2,814
    排名
  • 1,828
    粉丝
关注
提问 私信

个人简介:翻过这座山,别人就能听到你的故事!

  • 毕业院校: 华中科技大学
  • 加入CSDN时间: 2017-01-18
博客简介:

BoCong-Deng的博客

博客描述:
青春都一饷,怎忍把浮名,换了浅斟低唱。
查看详细资料
  • 6
    领奖
    总分 2,118 当月 42
个人成就
  • 博客专家认证
  • 获得2,946次点赞
  • 内容获得350次评论
  • 获得7,529次收藏
  • GitHub 获得441Stars
创作历程
  • 1篇
    2022年
  • 3篇
    2021年
  • 133篇
    2020年
  • 40篇
    2019年
  • 22篇
    2018年
  • 13篇
    2017年
成就勋章
TA的专栏
  • TensorFlow
    5篇
  • PyTorch
    2篇
  • Paper
    24篇
  • 算法及数据结构
    34篇
  • 深入谈谈Java
    28篇
  • 图论
    3篇
  • NLP
    13篇
  • 深度学习
    23篇
  • SpringBoot
    22篇
  • Docker
    5篇
  • 数据库
    1篇
  • 真正理解设计模式
    10篇
  • Android
    12篇
  • 技术杂谈
    24篇
  • 网络
    1篇
  • Django开发
    2篇
  • Qt开发
    2篇
  • Spring
    1篇
  • 面试
    9篇
  • Linux/Shell
    4篇
  • Git
    9篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 人工智能
    opencv计算机视觉caffetensorflowmxnetpytorch图像处理nlpscikit-learn聚类集成学习迁移学习分类回归
  • 搜索
    elasticsearch
  • 服务器
    linux
DengBoCong的博客

欢迎点击关注和留言
本人编写博文均为学习使用,若博文引用的内容存在侵权问题望告知,立即删改!

欢迎关注

知乎 | GitHub

  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

文本分类模型合集-详细注解--tf/pytorch双版本

OverviewOverviewUsagesTF-IDFBM25LSHSIFFastTextRNN BaseCNN BaseBert BaseAlbertNEZHARoBERTaSimCSEOverviewDataset: 中文/English 语料, ☞ 点这里Paper: 相关论文详解, ☞ 点这里The implemented method is as follows::TF-IDFBM25LSHSIF/uSIFFastTextRNN Base (Siamese RNN,
原创
发布博客 2022.03.18 ·
756 阅读 ·
2 点赞 ·
1 评论

打造一个能够在线部署的深度学习对话系统--开源更新中!

一个能够在线部署的全流程对话系统,项目地址:[nlp-dialogue](https://github.com/DengBoCong/nlp-dialogue)。本项目的目标是奔着构建一个能够在线部署、执行、应用的全流程对话系统,即包含语料处理、训练、评估、推断、部署、Web服务的从头到尾的UI化系统功能。项目中计划同时包含开放域和面向任务型两种对话系统,模型的思路来源即为针对相关模型进行复现(论文阅读笔记放置在另一个项目:[nlp-paper](https://github.com/DengBoCong/
原创
发布博客 2021.02.16 ·
773 阅读 ·
2 点赞 ·
0 评论

深度学习中眼花缭乱的Normalization学习总结

对于深度学习而言,正则化方法就是“通过把一部分不重要的复杂信息损失掉,以此来降低拟合难度以及过拟合的风险,从而加速了模型的收敛”,而本篇文章我们要讲的Normalization方法的目的就是让分布稳定下来(降低各维度数据的方差),不同的正则化方法的区别只是操作的信息维度不同,即选择损失信息的维度不同。
原创
发布博客 2021.01.16 ·
381 阅读 ·
2 点赞 ·
0 评论

论文阅读笔记:看完也许能进一步了解Batch Normalization

训练深度神经网络非常复杂,因为在训练过程中,随着先前各层的参数发生变化,各层输入的分布也会发生变化,导致调参工作要做的很小心,训练更加困难,论文中将这种现象称为“internal covariate shift”,而Batch Normalization正式用来解决深度神经网络中internal covariate shift现象的方法。
原创
发布博客 2021.01.07 ·
317 阅读 ·
0 点赞 ·
0 评论

论文阅读笔记:Covariate Shift: A Review and Analysis on Classifiers

我们都知道在机器学习模型中,训练数据和测试数据是不同的阶段,并且,通常是是假定训练数据和测试数据点遵循相同的分布。但是实际上,模型的输入和输出的联合分布在训练数据和测试数据之间是不同的,这称为dataset shift。dataset shift的一种简单情况就是covariate shift,covariate shift仅输入分布发生变化,而在给定输入的输出条件分布保持不变。本文主要概述了现有covariate shift检测和自适应方法及其应用,同时基于包含合成数据和真实数据的四种数据集,提供了各种c
原创
发布博客 2020.12.29 ·
515 阅读 ·
0 点赞 ·
1 评论

NLP中遇到的各类Attention结构汇总以及代码复现

我们所熟知的encoder和decoder结构中,通常采用RNN结构如GRU或LSTM等,在encoder RNN中将输入语句信息总结到最后一个hidden vector中,并将其作为decoder的初始hidden vector,从而利用decoder的解码成对应的其他语言中的文字。但是这样的结构会出现一些问题,比如老生常谈的长程梯度消失的问题,对于较长的句子很难寄希望于将输入的序列转化为定长的向量而保存所有的有效的信息,所以随着输入序列的长度增加,这种结构的效果就会显著下降。因此这个时候就是Attent
原创
发布博客 2020.12.26 ·
1305 阅读 ·
0 点赞 ·
1 评论

论文阅读笔记:Tacotron和Tacotron2

本文主要是对Tacotron和Tacotron2论文中的关键部分进行阐述和总结,之所以两篇论文放在一起,是因为方便比较模型结构上的不同点,更清晰的了解Tacotron2因为改进了哪些部分,在性能上表现的比Tacotron更好。
原创
发布博客 2020.12.17 ·
1278 阅读 ·
1 点赞 ·
0 评论

利器:TTS Frontend 中英Text-to-Phoneme Converter,附代码

NLP的语音合成中,有一种关键技术是将文字拆解成音素,再去语音库里匹配相同音素的语音片段,来实现文字转换语音。音素是给定语言的语音,如果与另一个音素交换,则会改变单词的含义,同时,音素是绝对的,并不是特定于任何语言,但只能参考特定语言讨论音素。由于音素的特性,非常适合用于语音合成领域。
原创
发布博客 2020.12.15 ·
669 阅读 ·
1 点赞 ·
0 评论

关于RNN理论和实践的一些总结

本篇文章主要总结我在学习过程中遇到的RNN、其相关变种,并对相关结构进行说明和结构图展示。内容包括RNN、RecNN、多层、双向、RNNCell等等,同时包括在计算框架(TensorFlow及PyTorch)API层面的一些理解记录。本篇文章不进行深入推导和底层原理介绍,仅做总结记录,感兴趣者可自行根据内容详细查阅资料。
原创
发布博客 2020.12.14 ·
315 阅读 ·
1 点赞 ·
0 评论

论文阅读笔记:Neural Speech Synthesis with Transformer Network

提示:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处。文章目录前言介绍这里科普一下TTS及语音方面的相关知识模型结构前言标题:Neural Speech Synthesis with Transformer Network原文链接:LinkGithub:NLP相关Paper笔记和代码复现说明:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处,引用之处如有侵权,烦请告知删除。转载请注明:DengBoCong介绍虽然像
原创
发布博客 2020.12.08 ·
275 阅读 ·
0 点赞 ·
0 评论

有必要了解的Subword算法模型

在NLP领域,对语料进行预处理的过程中,我们需要进行分词和生成词典。很多时候用多了框架的API,觉得分词和生成字典就是调用的事情,不过事情并没有那么简单,比如其中涉及到的未登录词的问题,就对任务性能影响很大。一种很朴素的做法就是将未见过的词编码成#UNK ,有时为了不让字典太大,只会把出现频次大于某个阈值的词丢到字典里边,剩下所有的词都统一编码成#UNK 。
原创
发布博客 2020.12.05 ·
706 阅读 ·
1 点赞 ·
0 评论

论文阅读笔记:Massive Exploration of Neural Machine Translation Architectures

在计算机视觉中通常会在大型超参数空间中进行扫描,但对于NMT模型而言,这样的探索成本过高,从而限制了研究人员完善的架构和超参数选择。更改超参数成本很大,在这篇论文中,展示了以NMT架构超参数为例的首次大规模分析,实验为构建和扩展NMT体系结构带来了新颖的见解和实用建议。本文工作探索NMT架构的常见变体,并了解哪些架构选择最重要,同时展示所有实验的BLEU分数,perplexities,模型大小和收敛时间,包括每个实验多次运行中计算出的方差数。
原创
发布博客 2020.12.04 ·
223 阅读 ·
0 点赞 ·
0 评论

论文阅读笔记:A Comparative Study on Transformer vs RNN in Speech Applications

序列到序列模型已广泛用于端到端语音处理中,例如自动语音识别(ASR),语音翻译(ST)和文本到语音(TTS)。本文着重介绍把Transformer应用在语音领域上并与RNN进行对比。与传统的基于RNN的模型相比,将Transformer应用于语音的主要困难之一是,它需要更复杂的配置(例如优化器,网络结构,数据增强)。在语音应用实验中,论文研究了基于Transformer和RNN的系统的几个方面,例如,根据所有标注数据、训练曲线和多个GPU的可伸缩性来计算单词/字符/回归错误。
原创
发布博客 2020.11.24 ·
327 阅读 ·
0 点赞 ·
0 评论

论文阅读笔记:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network

本文在一个统一的神经网络中介绍了这两种注意力,网络命名为Deep Attention Matching Network(DAM),用于多回合响应选择。在实践中,DAM将上下文或响应中的语句的每个词作为抽象语义段的中心含义,并通过堆叠式的自注意力丰富其表示,从而逐渐围绕中心词生成越来越复杂的段表示 。考虑到文本相关性和依存性信息,上下文和响应中的每个语句都基于不同粒度的句段对进行匹配。这样,DAM通常会捕获上下文之间的匹配信息以及从单词级到句子级的响应,然后使用卷积和最大池化操作提取重要的匹配特征,最后通过单
原创
发布博客 2020.11.23 ·
1104 阅读 ·
0 点赞 ·
0 评论

搞定检索式对话系统的候选response检索--使用pysolr调用Solr

模型结构和训练至关重要,但是检索候选回复也是使得整个对话流程实现闭环的关键。我们了解了检索的目的和整体流程,那我们从何实现?方式有很多,可以自行编写一个脚本从数据集中生成一个索引候选数据集(这个是我最开始用的方法,但毕竟没专门研究过检索,所以写的很粗糙,勉强验证功能可以,用作正式使用就不行了),还有一种就是使用现有的检索工具,比如Lucene、Solr、ElasticSearch等等。所以这篇文章就是来讲解部署solr和使用python实现检索
原创
发布博客 2020.11.19 ·
784 阅读 ·
1 点赞 ·
1 评论

论文阅读笔记:ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections

论文中介绍了一种叫ProjectionNet的联合框架,可以为不同机器学习模型架构训练轻量的设备端模型。其使用复杂的前馈/循环架构(就像 LSTM)作为训练模型,联合一个简单的投影(projection)架构——其中包含动态投影操作以及一些窄带全连接层。整个架构使用反向传播在 TensorFlow 上进行端到端训练,在训练完成后,我们就可以直接使用紧凑的 ProjectionNet 进行推理了。通过这种方法,我们可以训练尺寸很小的 ProjectionNet 模型,兼顾小尺寸(比常规模型小几个数量级)与高性
原创
发布博客 2020.11.16 ·
304 阅读 ·
0 点赞 ·
0 评论

论文阅读笔记:MuTual: A Dataset for Multi-Turn Dialogue Reasoning

面向非任务的对话系统在给定上下文的情况下,当前系统能够产生相关且流畅的回复,但是由于推理能力较弱,有时会出现逻辑错误。为了促进对话推理研究,发布了多轮对话推理数据集 MuTual,针对性地评测模型在多轮对话中的推理能力。它由基于中国学生英语听力理解考试的8,860个手动注释的对话组成
原创
发布博客 2020.11.10 ·
492 阅读 ·
1 点赞 ·
0 评论

深度学习矩阵乘法的终极奥义einsum,结合多个计算框架上的使用

einsum以一种优雅的方式,表示各种矩阵运算,好处在于你不需要去记和使用计算框架中(TensorFlow|PyTorch|Numpy)点积、外积、转置、矩阵-向量乘法、矩阵-矩阵乘法的函数名字和签名。从某种程度上解决引入不必要的张量变形或转置运算,以及可以省略的中间张量的现象。不仅如此,einsum有时可以编译到高性能代码,事实上,PyTorch最近引入的能够自动生成GPU代码并为特定输入尺寸自动调整代码的张量理解(Tensor Comprehensions)就基于类似einsum的领域特定语言。此外,可
原创
发布博客 2020.11.09 ·
1507 阅读 ·
6 点赞 ·
0 评论

好好琢磨一下TF-IDF,结合Sklearn

TF-IDF(Term Frequency-Inverse Document Frequency)是一种针对关键词的统计分析方法,用于评估一个词对一个文件集或者一个语料库的重要程度。一个词的重要程度跟它在文章中出现的次数成正比,跟它在语料库出现的次数成反比。这种计算方式能有效避免常用词对关键词的影响,提高了关键词与文章之间的相关性。原理说简单点,不难理解。
原创
发布博客 2020.11.08 ·
860 阅读 ·
1 点赞 ·
0 评论

损失函数理解汇总,结合PyTorch和TensorFlow2

本文打算讨论在深度学习中常用的十余种损失函数,结合PyTorch和TensorFlow2对其概念、公式及用途进行阐述,希望能达到看过的伙伴对各种损失函数有个大致的了解以及使用。本文对原理只是浅尝辄止,不进行深挖,感兴趣的伙伴可以针对每个部分深入翻阅资料。
原创
发布博客 2020.11.02 ·
1253 阅读 ·
1 点赞 ·
1 评论
加载更多