- 博客(5)
- 收藏
- 关注
原创 毕设周记Ⅳ
高维数据源预处理,对其进行标准化,原始数据均转换为无量纲化指标测评值,消除量纲影响。 利用秩和检验对标准化后的基因进行筛选,寻找出较为显著的基因,即p值小于α的基因。筛选出的基因便于后期病患和正常人的分类。目前能够将12,000多个基因筛选出700多个显著性强的基因。 这两天在笼统地看分类的方法,类似决策树、贝叶斯分类器、支持向量机的概念和数学原理等等,准备实现分类器。 目前的想
2016-01-21 14:40:27 1157
原创 毕设周记Ⅲ
• 高维数据源的问题已解决,是关于病患和正常人基因表达的数据,源数据已tag,只要 比较降维后数据分类的准确程度即可。 • 通过R实现了生成随机投影矩阵的方法RPGenerate(),包括高斯随机矩阵以及稀疏随 机矩阵,其中,稀疏随机矩阵的生成是按照一定概率将不同值投到矩阵中。 • 网上找到关于RandomProjection的python第三方库scikit-learn,目前在看它的源
2016-01-14 19:18:09 1162
原创 毕设周记Ⅱ
学习熟悉R语言相关的知识,看完慕课网上R语言入门教学视频,进阶材料是《R语言实战》,随用随查。 了解学习当前主流的降维方法。 主成分分析(PCA) 将原始变量转换为一小部分反映事物主要性质的变量;选择确定的几个方向将源高维数据投影到低维空间,降维后数据间方差最大;事先要求解关于样本数据的协方差矩阵,继而求解特征值与特征向量;所有样本统一对待,忽略类别属性; 线性判别
2016-01-05 16:28:45 1374
原创 毕设周记Ⅰ
参考本题相关文献《Recovering the Optimal Solution by Dual Random Projection》,确定题目完成大致步骤和流程,概要如下。 获取高维数据集;应用随机投影(random projection)方法对其进行降维处理;在投影空间对降维处理后的低维数据求最优解;计算该低维数据最优解相应的对偶解(dual solution);应用对偶解复原高维数据
2016-01-05 16:16:59 1203
转载 字符串匹配的KMP算法
字符串匹配的KMP算法 转自作者: 阮一峰 字符串匹配是计算机的基本任务之一。 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起
2015-09-08 18:45:47 199
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人