Sklearn中的Tf-idf原理(source code):
- Tf-idf训练
Fit_transform学习到一个字典,并返回Document-term的矩阵(即词典中的词在该文档中出现的频次)
TfidfVectorizer.fit_transform(raw_document) = TfidfTransformer.fit(X).transform(X)
Fit步骤学习idf vector,一个全局的词权重_idf_diag。输入的X是一个稀疏矩阵,行是
Sklearn中的Tf-idf原理(source code):
Fit_transform学习到一个字典,并返回Document-term的矩阵(即词典中的词在该文档中出现的频次)
TfidfVectorizer.fit_transform(raw_document) = TfidfTransformer.fit(X).transform(X)
Fit步骤学习idf vector,一个全局的词权重_idf_diag。输入的X是一个稀疏矩阵,行是