奇偶排序,或奇偶换位排序,或砖排序,是一种相对简单的排序算法,最初发明用于有本地互连的并行计算。这是与冒泡排序特点类似的一种比较排序。该算法中,通过比较数组中相邻的(奇-偶)位置数字对,如果该奇偶对是错误的顺序(第一个大于第二个),则交换。下一步重复该操作,但针对所有的(偶-奇)位置数字对。如此交替进行下去。
处理器数组的排序
在并行计算排序中,每个处理器对应处理一个值,并仅有与左右邻居的本地互连。所有处理器可同时与邻居进行比较、交换操作,交替以奇-偶、偶-奇的顺序。该算法由Habermann在1972年最初发表并展现了在并行处理上的效率。
该算法可以有效地延伸到每个处理器拥有多个值的情况。在Baudet–Stevenson奇偶合并分区算法中,每个处理器在每一步对自己所拥有的子数组进行排序,然后与邻居执行合并分区或换位合并。
Batcher奇偶归并排序
Batcher奇偶归并排序是一种相关但更有效率的排序算法,采用比较-交换和完美-洗牌操作。
Batcher的方法在拥有广泛互连的并行计算处理器上效率不错。
算法
以下表现其单处理器算法,类似冒泡排序,较为简单但效率并不特别高。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<ctype.h>
#include<stdbool.h>
void swap(int *a, int *b)
{
int t;
t=*a;
*a=*b;
*b=t;
}
void printArray(int a[], int count)
{
int i;
for(i=0; i<count; i++)
printf("%d ",a[i]);
printf("\n");
}
void Odd_even_sort(int a[], int size)
{
bool sorted=false;
while(!sorted)
{
sorted=true;
for(int i=1; i<size-1; i+=2)
{
if(a[i]>a[i+1])
{
swap(&a[i],&a[i+1]);
sorted=false;
}
}
for(int i=0; i<size-1; i+=2)
{
if(a[i]>a[i+1])
{
swap(&a[i],&a[i+1]);
sorted=false;
}
}
}
}
int main(void)
{
int a[]={3, 5, 1, 6, 9, 7, 8, 0, 11};
int n=sizeof(a)/sizeof(*a);
Odd_even_sort(a,n);
printArray(a,n);
return 0;
}