人工智能算法
披Zhe羊皮De狼
好记性不如烂笔头!
展开
-
遗传算法入门(一)
(一)遗传算法简介遗传算法的概念最早是由 Bagley J.D 于1967年提出,后来Michigan大学的 J.H.Holland 教授于1975年开始对遗传算法的机理进行系统化的研究。遗传算法是受达尔文进化论启发,借鉴生物进化过程而提出的一种启发式搜索算法,它是对达尔文生物进化理论的简单模拟,遵循“适者生存”、“优胜略汰”的原理。遗传算法(Genetic Algorithm,GA)又叫原创 2015-11-22 11:48:10 · 1562 阅读 · 0 评论 -
遗传算法入门(三)
一个简单的遗传算法的例子:求 [0,31]范围内的y=(x-10)^2的最小值1)编码算法选择为"将x转化为2进制的串",串的长度为5位。(等位基因的值为0 or 1)2)计算适应度的方法是:先将个体串进行解码,转化为int型的x值,然后使用y=(x-10)^2作为其适应度计算合适(由于是最小值,所以结果越小,适应度也越好)3)正式开始,先设置群体大小为4,然后初始化群体 => (在[原创 2015-11-23 19:24:46 · 1223 阅读 · 0 评论 -
粒子群算法(一)
(一)背景介绍1.1、人工生命人工生命:研究具有某些生命基本特征的人工系统。包括两方面的内容: 1、研究如何利用计算技术研究生物现象; 2、研究如何利用生物技术研究计算问题。 此处关注的是第二点。已有很多源于生物现象的计算技巧,例如神经网络和遗传算法。现在讨论另一种生物系统统---社会系统:由简单个体组成的群落和环境及个体之间的相互行为。1原创 2015-11-24 14:35:30 · 5560 阅读 · 0 评论 -
遗传算法入门(四)
TSP问题实际上是”哈密顿回路问题”中的”哈密顿最短回路问题”.如下图,就是要把下面8个城市不重复的全部走一遍。有点像小时候玩的画笔画游戏,一笔到底不能重复。TSP不光是要求全部走一遍,并且是要求路径最短。就是有可能全部走一遍有很多走法,要找出其中总路程最短的走法。 和这个问题有点相似的是欧拉回路(下图)问题,它不是要求把每个点都走一遍,而是要求把每个原创 2015-11-23 19:26:09 · 1712 阅读 · 0 评论 -
粒子群算法(二)全局版本
标准的粒子群算法(一)问题抽象鸟被抽象为没有质量和体积的微粒(点),并延伸到N维空间,粒子I在N维空间的位置表示为矢量Xi=(X1,X2,…,Xn),飞行速度表示为矢量Vi=(V1,V2,…,Vn)。每个粒子都有一个由目标函数决定的适应值(fitness value),并且知道自己到目前为止发现的最好位置(pbest)和现在的位置Xi。这个可以看作是粒子自己的飞行经验。除此之外,每个粒原创 2015-11-24 15:44:31 · 9958 阅读 · 0 评论 -
遗传算法入门(二)
(一)遗传算法的特点自组织、自适应和自学习性。在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索。本质并行性。内在并行性与内含并行性。不需求导。只需目标函数和适应度函数。概率转换规则。强调概率转换规则,而不是确定的转换规则。(二)遗传算法的基本步骤遗传算法是具有"生成+检测"(generate-and-test)的迭代过程的搜索算法。原创 2015-11-22 15:03:23 · 905 阅读 · 0 评论 -
粒子群算法(三)局部版本
在全局的标准粒子群算法中,每个粒子速度的更新是根据两个因素变化的。这两个因素是:1.粒子自己历史最优值 pi。2.粒子群体的全局最优值 pg。如果改变粒子速度更新公式,让每个粒子速度的更新根据以下两个因素进行:A.粒子自己历史最优值pi。B.粒子邻域内粒子的最优值pnk。其余保持跟全局的标准粒子群算法一样,这个算法就变为局部的粒子群算法。一般一个粒子i的邻域随着迭代次数的增加而逐渐原创 2015-11-24 16:44:12 · 6951 阅读 · 0 评论