Spark性能优化第六季

一:Shuffle性能调优

1,问题:Shuffle output file lost?真正的原因是GC导致的!!!如果GC尤其是Full GC产生通常会导致线程停止工作,这个时候下一个Stage的Task在默认情况下就会尝试重试来获取数据,一般重试3次每次重试的时间为5s,也就是说默认情况下15s内如果还是无法抓到数据的话,就会出现Shuffle output file lost等情况,进而会导致Task重试,甚至会导致Stage重试,最严重的是会导致App失败;在这个时候首先就要采用高效的内存数据结构和序列化机制、JVM的调优来减少Full GC的产生;

2,在Shuffle的时候,Reducer端获取数据就会有一个指定大小的缓存空间,如果内存足够达到情况下,可以适当的增大该缓存空间,否则会spill到磁盘,影响效率。

此时可以调整(增大)spark.reducer.maxSizeInFlight参数;

3,在ShuffleMapTask端通常也会增大Map任务的写磁盘的缓存,默认情况下是32K,spark.shuffle.file.buffer;

4,调整获取Shuffle数据的重试次数,默认是3次,通常建议增大重试次数;调整获取Shuffle数据重试的时间间隔,默认是5s,强烈建议提高该时间,spark.shuffle.io.retryWait;

5,在Reducer端做Aggregation的时候,默认是20%的内存用来做Aggregation,如果超出了这个大小就会溢出到磁盘上,建议调大百分比来提高性能;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值