具体数学笔记 第一章

约瑟夫问题。

依然从研究小的情况开始

人数(n)123456
幸存者编号J(n)113135

可得数学表达式:
(1.8) J ( 1 ) = 1 ; J ( 2 n ) = 2 J ( n ) − 1 ; J ( 2 n + 1 ) = 2 J ( n ) + 1. \tag{1.8} \begin{aligned} J(1)& = 1;\\ J(2n)& = 2J(n) -1;\\ J(2n+1)& = 2J(n) +1.\\ \end{aligned} J(1)J(2n)J(2n+1)=1;=2J(n)1;=2J(n)+1.(1.8)

根据这个递归式,对很小的值做一张表

n12   34   5   6  78 9 10 11 12   13  14   1516
J(n)11   31    3   5  71 3   5  7    9   11  13   15  1

看起来可以得到一个封闭形式:
(1.9) J ( 2 m + l ) = 2 l + 1 , m ⩾ 0 , 0 ⩽ l &lt; 2 m \tag{1.9} \\ J(2^m+l) = 2l+1, m\geqslant0, 0\leqslant l&lt;2^m J(2m+l)=2l+1,m0,0l<2m(1.9)
注意,如果 2 m ⩽ n &lt; 2 m + 1 2^m \leqslant n &lt; 2^{m+1} 2mn<2m+1,则余下来的数 l = n − 2 m l=n-2^m l=n2m满足$0\leqslant l <2^{m+1} - 2^m = 2^m $

证明式中有用到了数学归纳法,如果对强归纳法不够熟悉,这一段看上去会很费劲。
先证明偶数情况:
如果m>0且 2 m + l = 2 n 2^m+l=2n 2m+l=2n, 那么 l l l是偶数.
J ( 2 m + l ) = 2 J ( 2 m − 1 + l 2 ) − 1 = 2 ( l 2 + 1 ) − 1 = 2 l + 1 \begin{aligned} J(2^m + l) &amp;= 2J(2^{m-1} + \frac{l}{2}) -1 \\&amp;= 2(\frac{l}{2} + 1) -1 \\&amp;= 2l + 1 \end{aligned} J(2m+l)=2J(2m1+2l)1=2(2l+1)1=2l+1

完整过程如下, 对1.9整理,可得:
J ( 2 m + l ) = J ( 2 ∗ 2 m − 1 + 2 ∗ l 2 ) = J [ 2 ( 2 m − 1 + l 2 ) ] \begin{aligned} J(2^m + l) &amp;=J(2*2^{m-1} + 2*\frac{l}{2}) \\&amp;= J[2(2^{m-1}+\frac{l}{2})] \end{aligned} J(2m+l)=J(22m1+22l)=J[2(2m1+2l)]
将1.8的偶数情况 J ( 2 n ) = 2 J ( n ) − 1 J(2n) = 2J(n) -1 J(2n)=2J(n)1代入可得
(推导1.0) J [ 2 ( 2 m − 1 + l 2 ) ] = 2 J ( 2 m − 1 + l 2 ) − 1 \tag{推导1.0} \\ J[2(2^{m-1}+\frac{l}{2})] = 2J(2^{m-1}+\frac{l}{2}) -1 J[2(2m1+2l)]=2J(2m1+2l)1(1.0)

  • 在这里先中断一下,复习一下第二数学归纳法:
        . 基础证明: 证明P(1)为真.
        (2)归纳步骤: 要证明对于所有正整数k来说,蕴含式 [ P ( 1 ) ∧ P ( 2 ) ∧ . . . ∧ P ( k ) ] → P ( k + 1 ) [P(1)\wedge P(2)\wedge ...\wedge P(k)]\rarr P(k+1) [P(1)P(2)...P(k)]P(k+1)为真. 即:假设P(1),P(2),…,P(k)为真, 可得P(k+1)也为真.

回到我们的(推导1.0), 对于封闭公式 J ( 2 m + l ) = 2 l + 1 , n = 2 m + l . J(2^m+l) = 2l+1, n=2^m+l. J(2m+l)=2l+1,n=2m+l.

  1. 当n取1时, m=0,l=0. 所以式(1.9的基础J(1) = 1成立-----基础证明, 重点是m=0时,式子成立.
  2. 归纳步骤: 假设 J ( 2 m − 1 + l ) = 2 l + 1 J(2^{m-1}+l) = 2l+1 J(2m1+l)=2l+1成立, 把 l l l换成 l 2 \frac{l}{2} 2l, 也就是假设$J(2^{m-1}+\frac{l}{2})] = 2\frac{l}{2}+1 $成立.

顺着推导1.0继续往下:
2 J ( 2 m − 1 + l 2 ) − 1 = 2 ( 2 l 2 + 1 ) − 1 = 2 l + 1 2J(2^{m-1}+\frac{l}{2}) -1=2(2\frac{l}{2}+1)-1 = 2l+1 2J(2m1+2l)1=2(22l+1)1=2l+1
故式子1.9在偶数情况下得证.
理解这里的重点是理解第二数学归纳法. 每每看到这段时都要被中断一下.

奇数情况也类似.
2 m + l 2^m+l 2m+l是奇数,即是 2 n + 1 2n+1 2n+1
2 n + 1 = 2 m + l 2 n = 2 m + l − 1 n = 2 m − 1 + l − 1 2 \begin{aligned} 2n+1 &amp;= 2^m+l\\ 2n &amp;= 2^m + l - 1\\ n &amp;= 2^{m-1} + \frac {l-1}{2} \end{aligned} 2n+12nn=2m+l=2m+l1=2m1+2l1
(推导1.1) J ( 2 m + l ) = 2 J ( 2 m − 1 + l − 1 2 ) + 1 \tag{推导1.1} J(2^m+l) = 2J(2^{m-1} + \frac {l-1}{2})+1 J(2m+l)=2J(2m1+2l1)+1(1.1)
归纳假设 J ( 2 m − 1 + l − 1 2 ) = 2 l − 1 2 + 1 J(2^{m-1} + \frac {l-1}{2}) = 2\frac{l-1}{2} + 1 J(2m1+2l1)=22l1+1
则可得:
J ( 2 m + l ) = 2 J ( 2 m − 1 + l − 1 2 ) + 1 = 2 ∗ ( 2 l − 1 2 + 1 ) + 1 = 2 ( l − 1 + 1 ) + 1 = 2 l + 1 \begin{aligned} J(2^m+l) &amp;= 2J(2^{m-1} + \frac {l-1}{2})+1\\ &amp;=2*(2\frac{l-1}{2} + 1) +1\\ &amp;=2(l-1+1) + 1\\ &amp;=2l+1 \end{aligned} J(2m+l)=2J(2m1+2l1)+1=2(22l1+1)+1=2(l1+1)+1=2l+1
故式子1.9在奇数情况下得证.

所以式子1.9得证.

扩展一下成套方法:

假设有一种递归式:
(1.11) f ( 1 ) = α ; f ( 2 n ) = 2 f ( n ) + β , n ⩾ 1 ; f ( 2 n + 1 ) = 2 f ( n ) + γ , n ⩾ 1. \tag{1.11} \begin{aligned} f(1)&amp;=\alpha;\\ f(2n)&amp;= 2f(n) + \beta, n \geqslant1;\\ f(2n+1)&amp;= 2f(n) + \gamma, n \geqslant1. \\ \end{aligned} f(1)f(2n)f(2n+1)=α;=2f(n)+β,n1;=2f(n)+γ,n1.(1.11)
让我们尝试给这样的递归式求出一个封闭形式.

还是一样,先从小的情况开始:

(1.12) \tag{1.12} (1.12)

n n n f ( n ) f(n) f(n)
1 α \alpha α
2

3

2 α + β 2\alpha + \beta 2α+β

2 α         +   γ 2\alpha\ \ \ \ \ \ \ + \ \gamma 2α       + γ

4

5

6

7

4 α + 3 β 4\alpha + 3\beta 4α+3β

4 α + 2 β + γ 4\alpha+2\beta + \gamma 4α+2β+γ

4 α +   β + 2 γ 4\alpha+\ \beta+2\gamma 4α+ β+2γ

4 α           + 3 γ 4\alpha\ \ \ \ \ \ \ \ \ +3\gamma 4α         +3γ

8

9

8 α + 7 β 8\alpha + 7\beta 8α+7β

8 α + 6 β + γ 8\alpha+6\beta + \gamma 8α+6β+γ

从表格中可以看到,如果把 f ( n ) f(n) f(n) α , β , γ \alpha,\beta,\gamma α,β,γ的依存关系分离开来,我们就能将它表示成:
(1.13) f ( n ) = A ( n ) α + B ( n ) β + C ( n ) γ \tag{1.13} f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma f(n)=A(n)α+B(n)β+C(n)γ(1.13)
结合表格1.12, 可以猜出:
(1.14A) A ( n ) = 2 m ; B ( n ) = 2 m − 1 − l C ( n ) = l n = 2 m + l , 0 ⩽ l &lt; 2 m , ( n ⩾ 1 ) \tag{1.14A} \begin{aligned} A(n) &amp;= 2^m; \\ B(n) &amp;= 2^m - 1 - l\\ C(n) &amp;= l \\ n=2^m+l , 0\leqslant l &lt; 2^m,(n\geqslant1) \end{aligned} A(n)B(n)C(n)n=2m+l,0l<2m,(n1)=2m;=2m1l=l(1.14A)
步伐慢一点,整理一下.现在我们能确定的只有1.11,它是我们设想出来的一种递归式
我们假设它的解是:
(1.14B) f ( n ) = 2 m α + ( 2 m − l − 1 ) β + l γ \tag{1.14B}f(n) = 2^m\alpha + (2^m-l-1)\beta + l\gamma f(n)=2mα+(2ml1)β+lγ(1.14B)
但是到现在为止,还只是假设而已.  ----> 1.14是否成立还需要进一步证明.
还有,这个式子的封闭形式只和 A ( n ) , B ( n ) , C ( n ) A(n),B(n),C(n) A(n),B(n),C(n)有关,和 α , β &ThinSpace; γ \alpha,\beta\,\gamma α,βγ无关.
也就是说,无论 α , β &ThinSpace; γ \alpha,\beta\,\gamma α,βγ取什么值,都不会影响 A ( n ) , B ( n ) , C ( n ) A(n),B(n),C(n) A(n),B(n),C(n).

很神奇吧, 这个是我读到这里时一直拐不过弯的点. 从猜测来源,表1.12中可以看到这一点, A ( n ) , B ( n ) , C ( n ) A(n),B(n),C(n) A(n),B(n),C(n)  和 α , β , γ \alpha,\beta,\gamma α,β,γ无关.待证明的式子(1.14A)也是这样体现的.
所以我们可以让 α = 1 , β = γ = 0 \alpha=1, \beta=\gamma=0 α=1,β=γ=0.
这样(1.11)就变成了
f ( 1 ) = 1 f ( 2 n ) = 2 f ( n ) , n ⩾ 1 ; f ( 2 n + 1 ) = 2 f ( n ) , n ⩾ 1. n = 2 m + l , 0 ⩽ l &lt; 2 m , ( n ⩾ 1 ) \begin{aligned} f(1)&amp;=1\\ f(2n)&amp;= 2f(n), n\geqslant 1;\\ f(2n+1)&amp;= 2f(n), n\geqslant 1. \\ n=2^m+l , 0\leqslant l &lt; 2^m,(n\geqslant1) \end{aligned} f(1)f(2n)f(2n+1)n=2m+l,0l<2m,(n1)=1=2f(n),n1;=2f(n),n1.
封闭形式就变成了
f ( n ) = A ( n ) f(n) = A(n) f(n)=A(n)
再代入上式,得:
f ( 1 ) = 1 f ( 2 n ) = 2 A ( n ) , n ⩾ 1 ; f ( 2 n + 1 ) = 2 A ( n ) , n ⩾ 1. n = 2 m + l , 0 ⩽ l &lt; 2 m , ( n ⩾ 1 ) \begin{aligned} f(1)&amp;=1\\ f(2n)&amp;= 2A(n), n\geqslant 1;\\ f(2n+1)&amp;= 2A(n), n\geqslant 1. \\ n=2^m+l , 0\leqslant l &lt; 2^m,(n\geqslant1) \end{aligned} f(1)f(2n)f(2n+1)n=2m+l,0l<2m,(n1)=1=2A(n),n1;=2A(n),n1.

  1. 现在可以开始证明 A ( n ) = 2 m A(n) = 2^m A(n)=2m, 也就是 A ( 2 m + l ) = 2 m A(2^m+l) = 2^m A(2m+l)=2m了.
    还是用归纳法:
    1.1 基础:
    当n =1时, m = 0, l = 0;
    f ( 1 ) = 2 0 + 0 = 1 f(1) = 2^0 + 0 = 1 f(1)=20+0=1
    1.2 归纳,
        假设 2 m − 1 + l 2^{m-1}+l 2m1+l是偶数
        假设 A ( 2 m + l ) = 2 m A(2^{m}+l) = 2^{m} A(2m+l)=2m
    左 边 : f ( 2 n ) = f ( 2 ∗ ( 2 m + l ) ) = f ( 2 m + 1 + 2 l ) f ( 2 m + 1 + 2 l ) = 2 A ( n ) = 2 A ( 2 m + l ) = 2 ∗ 2 m = 2 m + 1 \begin{aligned} 左边: f(2n) &amp;= f \Bigl( 2*(2^m+l)\Bigr)\\ &amp;=f(2^{m+1} + 2l)\\ f(2^{m+1} + 2l)&amp;=2A(n)\\ &amp;=2A(2^m+l)\\ &amp;=2*2^m\\ &amp;=2^{m+1}\\ \end{aligned} :f(2n)f(2m+1+2l)=f(2(2m+l))=f(2m+1+2l)=2A(n)=2A(2m+l)=22m=2m+1
        假设 2 m − 1 + l 2^{m-1}+l 2m1+l是奇数:
    左 边 : f ( 2 n + 1 ) = f ( 2 ∗ ( 2 m + l ) ) = f ( 2 m + 1 + 2 l ) f ( 2 m + 1 + 2 l ) = 2 A ( n ) = 2 A ( 2 m + l ) = 2 ∗ 2 m = 2 m + 1 \begin{aligned} 左边: f(2n+1) &amp;= f \Bigl( 2*(2^m+l)\Bigr)\\ &amp;=f(2^{m+1} + 2l)\\ f(2^{m+1} + 2l)&amp;=2A(n)\\ &amp;=2A(2^m+l)\\ &amp;=2*2^m\\ &amp;=2^{m+1}\\ \end{aligned} :f(2n+1)f(2m+1+2l)=f(2(2m+l))=f(2m+1+2l)=2A(n)=2A(2m+l)=22m=2m+1
    故: A ( n ) = 2 m A(n) = 2^m A(n)=2m
  2. 接下来不基于刚才的计算, 重新审视一下(1.11)和(1.13).
    1.1 如果我们让 f ( n ) = 1 f(n)=1 f(n)=1
          则对于(1.11)
    f ( 1 ) = α = 1 ; 可 得 : α = 1 f ( 2 n ) = 2 f ( n ) + β = 2 ∗ 1 + β = 1 ; 可 得 : β = − 1 f ( 2 n + 1 ) = 2 f ( n ) + γ = 2 ∗ 1 + γ = 1 ; 可 得 : γ = − 1 \begin{aligned} f(1)&amp;=\alpha \\ &amp;=1;\\ 可得:\alpha=1\\ f(2n)&amp;= 2f(n) + \beta\\ &amp;=2*1+\beta\\ &amp;=1;\\ 可得:\beta=-1\\ f(2n+1)&amp;= 2f(n) + \gamma\\ &amp;=2*1+\gamma\\ &amp;=1;\\ 可得:\gamma=-1 \end{aligned} f(1):α=1f(2n):β=1f(2n+1):γ=1=α=1;=2f(n)+β=21+β=1;=2f(n)+γ=21+γ=1;
          将 f ( n ) = 1 , α = 1 , β = − 1 , γ = − 1 f(n)=1, \alpha=1,\beta=-1,\gamma=-1 f(n)=1,α=1,β=1,γ=1代入方程(1.13),可得:
                 A ( n ) − B ( n ) − C ( n ) = 1 A(n) - B(n) - C(n)=1 A(n)B(n)C(n)=1
    1.2 如果我们让 f ( n ) = n f(n) = n f(n)=n
          则对于(1.11)
    f ( 1 ) = 1 ; 可 得 : α = 1 f ( 2 n ) = 2 f ( n ) + β = 2 n + β 可 得 : β = 0 f ( 2 n + 1 ) = 2 f ( n ) + γ = 2 n + γ 可 得 : γ = 1 \begin{aligned} f(1)&amp;=1;\\ 可得:\alpha=1\\ f(2n)&amp;= 2f(n) + \beta\\ &amp;=2n+\beta\\ 可得:\beta=0\\ f(2n+1)&amp;= 2f(n) + \gamma\\ &amp;=2n+\gamma\\ 可得:\gamma=1 \end{aligned} f(1):α=1f(2n):β=0f(2n+1):γ=1=1;=2f(n)+β=2n+β=2f(n)+γ=2n+γ
          将 f ( n ) = 1 , α = 1 , β = − 1 , γ = − 1 f(n)=1, \alpha=1,\beta=-1,\gamma=-1 f(n)=1,α=1,β=1,γ=1代入方程(1.13),可得:
                 A ( n ) + 0 ∗ B ( n ) + C ( n ) = n A(n) + 0*B(n) + C(n)=n A(n)+0B(n)+C(n)=n
  3. 联立方程组:
    { A ( n ) = 2 m A ( n ) − B ( n ) − C ( n ) = 1 A ( n ) + C ( n ) = n \begin{cases} A(n) = 2^m\\ A(n) - B(n) - C(n)=1\\ A(n) + C(n)=n \end{cases} A(n)=2mA(n)B(n)C(n)=1A(n)+C(n)=n
    可 得 C ( n ) = n − A ( n ) = n − 2 m . ∵ n = 2 m + l l = n − 2 m ∴ C ( n ) = l \begin{aligned} 可得 C(n) &amp;= n-A(n) \\ &amp;= n-2^m.\\ \because n&amp;= 2^m + l \\ l&amp;=n-2^m\\ \therefore C(n)&amp;=l \end{aligned} C(n)nlC(n)=nA(n)=n2m.=2m+l=n2m=l
    B ( n ) = A ( n ) − c ( n ) − 1 = 2 m − l − 1 \begin{aligned} B(n) &amp;= A(n) -c(n) -1\\ &amp;=2^m -l -1 \end{aligned} B(n)=A(n)c(n)1=2ml1

故: (1.14)得证

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值