辗转相除

辗转相除

辗转相除, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。

证明:
设两数为a、b(b<a),求它们最大公约数(a、b)的步骤如下:用b除a,得a=bq1+r1(0≤r1<b)。若r1=0,则(a,b)= b;若r1≠0,则再用r1除b,得b=r1q2+r2(0≤r2<r1)。若r2=0,则(a,b)=r1,若r2≠0,则继续用 r2除r1,……如此下去,直到能整除为止。其最后一个非零余数即为(a,b)。

算法
辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:
   1. 若 r 是 a ÷ b 的余数, 则
          gcd(a,b) = gcd(b,r)
   2. a 和其倍数之最大公因子为 a。
另一种写法是:
   1. a ÷ b,令r为所得余数(0≤r<b)
          若 r = 0,算法结束;b 即为答案。
   2. 互换:置 a←b,b←r,并返回第一步。

这个算法可以用递归写成如下:
function gcd(a, b) {
    if a mod b<>0
        return gcd(b, a mod b);
    else
        return a;
}
或纯使用循环:
function gcd(a, b) {
    define r as integer;
    while b ≠ 0 {
        r := a mod b;
        a := b;
        b := r;
    }
    return a;
}
其中“a mod b”是指取 a ÷ b 的余数。
例如,123456 和 7890 的最大公因子是 6, 这可由下列步骤看出:
a  b  a mod b
123456  7890  5106
7890  5106  2784
5106  2784  2322
2784  2322  462
2322  462  12
462  12  6
12  6  0
只要可计算余数都可用辗转相除法来求最大公因子。这包括多项式、复整数及所有欧几里德定义域(Euclidean domain)。
辗转相除法的运算速度为 O(n2),其中 n 为输入数值的位数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值