nyoj--1007 GCD

题意:求满足i从1 ~ n,使得gcd(i,n) >=m 的i的和

题解:解决这道题我们首先要知道两点 

1、欧拉定理

我们假设gcd(n,i) = k,则gcd(n/k,i/k) = 1。即假设gcd(n/k, x ) = 1,则gcd(n,x*k) = k。gcd(n,i) = k,k的取值是确定的,

即n的所有因子,所以,满足gcd(n/k,x) = 1个x的个数即为最大公约数为k的个数

2、若gcd(x,n) = 1(n > 1);那么gcd(n-x,n) = 1;那么你懂得~~大笑

注意当n为1或2的时候euler(n) = 1;要特殊处理一下

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<iostream>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
LL euler(LL x)
{
    LL res = x;
    for(LL i = 2;i <= sqrt(x);i++)
    {
        if(x%i==0)
        {
            while(x%i==0) x/=i;
            res = res/i*(i-1);
        }
    }
    if(x > 1) res = res / x * ( x - 1);
    return res;
}
void solve(LL m,LL r)
{
    LL res = 0;
    for(LL i = 1;i <= sqrt(m);i++)
    {
        if(m%i==0)
        {
            if(m/i!=i&&m/i>=r)
            {
                if(i == 1|| i== 2)
                    res = (res + m/i) % mod;
                else
                    res = (res + euler(i) / 2 * i * (m/i))%mod;
            }
            if(i >= r)
            {
                if(m/i == 1|| m/i == 2)
                    res = (res + i)%mod;
                else
                    res = (res + euler(m/i) / 2 * (m/i) * i)%mod;
            }
        }
    }
    printf("%lld\n",res);
}
int main()
{
//    freopen("input.txt","r",stdin);
//    freopen("output.txt","w",stdout);
    LL n,k;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld",&n,&k);
        solve(n,k);
    }
}
        


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值