模板

LL AB(LL x,LL y,LL m)//让a*b%m不越界
{
    LL res=0;
    while(y)
    {
        if(y&1) res=(res+x)%m;
        x=(x*2)%m;
        y>>=1;
    }
    return res%m;
}

void cuopai(){//错排公式
    
    f[1] = 0,f[2] = 1;
    for(int i = 3;i <= maxn;i++)
        f[i] = (i - 1) * ( f[i-1] + f[i-2] );
        
}


/**********            计算几何          *********/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
#define eps 1e-8
int top,n;
//点
struct POINT
{
    double x, y;
    int pnd;
    POINT(){ }
    POINT(double a, double b){
        x = a;
        y = b;
    }
}p[10005],st[10005];
//线段
struct Seg
{
    POINT a, b;
    Seg() { }
    Seg(POINT x, POINT y){
        a = x;
        b = y;
    }
};
//叉乘
double cross(POINT o, POINT a, POINT b)
{
    return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
}
//判断点在线段上
bool On_Seg(POINT a, Seg s)
{
    double maxx = max(s.a.x, s.b.x), minx = min(s.a.x, s.b.x);
    double maxy = max(s.a.y, s.b.y), miny = min(s.a.y, s.b.y);
    if(a.x >= minx && a.x <= maxx && a.y >= miny && a.y <= maxy) return true;
    return false;
}
//判断线段相交
bool Seg_cross(Seg s1, Seg s2)
{
    double cs1 = cross(s1.a, s2.a, s2.b);
    double cs2 = cross(s1.b, s2.a, s2.b);
    double cs3 = cross(s2.a, s1.a, s1.b);
    double cs4 = cross(s2.b, s1.a, s1.b);
    // 互相跨立
    if(cs1 * cs2 < 0 && cs3 * cs4 < 0) return true;
    if(cs1 == 0 && On_Seg(s1.a, s2)) return true;
    if(cs2 == 0 && On_Seg(s1.b, s2)) return true;
    if(cs3 == 0 && On_Seg(s2.a, s1)) return true;
    if(cs4 == 0 && On_Seg(s2.b, s1)) return true;
    return false;
}
//求两条线段的交点,但是,必须保证线段相交且不共线
//共线的话需要特判
POINT Inter(Seg s1, Seg s2)
{
    double k = fabs(cross(s1.a, s2.a, s2.b)) / fabs(cross(s1.b, s2.a, s2.b));
    return POINT((s1.a.x + s1.b.x * k) / (1 + k), (s1.a.y + s1.b.y * k) / (1 + k));
}
//多边形面积,需要有顺序,顺(逆)时针。

double area()
{
    double ans = 0;
    for(int i = 1; i < top; i ++){
        ans += cross(p[0], p[i], p[i + 1]);
    }
    return ans;
}
//找凸包基点排序
bool cmp0(POINT a, POINT b)
{
    if(a.y < b.y) return true;
    else if(a.y == b.y && a.x < b.x) return true;
    return false;
}
//极角排序
double dis(POINT a , POINT b){
    return sqrt( (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) );
}
bool cmp1(POINT a, POINT b)
{
    if(cross(p[0], a, b)  > eps) return true;
    else if(fabs(cross(p[0], a, b)) < eps && dis(p[0], a) - dis(p[0], b) > eps) return true;
    return false;
}
//Graham_scan 求凸包.所求为纯净凸包...,当凸包点数为2(周长)要特判 即两点的距离
double Graham_scan()
{
    sort(p, p + n, cmp0);
    sort(p + 1, p + n, cmp1);
    top = 0;
    p[n] = p[0];
    st[top ++] = p[0]; st[top ++] = p[1];
    for(int i = 2; i <= n; i ++){
        while(top > 2 && (cross(st[top - 1], st[top - 2], p[i]) > eps || fabs(cross(st[top - 1], st[top - 2], p[i])) < eps)) top --;
        st[top ++] = p[i];
    }
    top --;
}


void init(){//素数打表
    cnt = 0;
    memset(vis,false,sizeof(vis));
    for(int i = 2;i < maxn ;i++){
        if(!vis[i]){
            prime[cnt ++] = i;
            for(int j = i + i; j < maxn;j += i)
                vis[j] = true;
        }
    }
}

int gcd(int a,int b){//最大公约数
    return b == 0 ? a : gcd(b,a%b);
}
int lcm(int a,int b){//最小公倍数
    return a * b / gcd(a,b);
}


int x,y;
int exgcd(int a,int b){//乘法逆元
    if(b == 0) {x = 1,y = 0;}
    else{
        exgcd(b,a%b);
        int tmp = x;
        x = y,y = tmp - a / b * y;
    }
}
</pre><pre name="code" class="cpp"><pre name="code" class="cpp">Manacher's ALGORITHM: O(n)时间求字符串的最长回文子串 

int Manacher(char *str)
{
    int len = strlen(str), p[N * 2];
    memset(p, 0, sizeof(p));

    //rebuild the string..
    char newstr[N * 2]; newstr[0] = '$';
    for(int i = 0; i < len; i ++){
        newstr[i * 2 + 1] = '#';
        newstr[i * 2 + 2] = str[i];
    }
    newstr[len * 2 + 1] = '#'; newstr[len * 2 + 2] = '\0';

    //id记录目前最长回文串的中心,mx为其右边界.
    int id = 0, mx = 0, ans = -1;
    for(int i = 1; newstr[i] != '\0'; i ++){
        int j = 2 * id - i;
        p[i] = mx > i ? min(p[j], mx - i) : 1;
        while(newstr[i + p[i]] == newstr[i - p[i]]) p[i] ++;
        if(i + p[i] > mx){
            id = i; mx = i +p[i];
        }
        if(p[i] > ans) ans = p[i];
    }
    return ans - 1;
}

补充:使用 Manacher 算法后我们得到了一个 len 数组,利用它我们可以在 O(1) 的时间内判断该字符串的任意子串是不是回文串,方法如下:
bool Query(int l, int r) //判断源串中的某一子串 ss[l...r] 是否为回文串  
{
    return p[l + r + 2] >= r - l + 1;
}


/**************************************************************************
题意:给你三角形外接圆和内切圆的半径分别为R,r,求出一个可行的三角形。
题解:对于无解的情况,我们能很快搞掉。
      然后我们能发现等腰三角形就能构造出所有的情况,
      于是只要算出等腰三角形的情况就好了。
      欧拉定理 (R - r) ^ 2 = d ^ 2 + r ^ 2 
      其中 d 是内心和外心的距离。
***************************************************************************/
#include <bits/stdc++.h>
using namespace std;

int main() {
    double r, R;
    while (scanf("%lf%lf", &r, &R) == 2) {
        if (2 * r > R) {
            puts("NO Solution!");
            continue;
        }
        double d = sqrt(R * R - 2.0 *r * R);
        double y = sqrt((d + R) * (d + R) - r * r);
        double x = 2.0 * R * sqrt(1 - (r * r / (R + d) / (R + d)));
        printf("%.18lf %.18lf %.18lf\n", x, x, 2.0 * (x - y));
    }
    return 0;
}







 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值