数据挖掘

1、知识发现过程

     数据清理--->数据集成-->数据选择-->数据变换-->数据挖掘-->模式评估-->知识表示

2、数据预处理

        数据清理:现实的数据往往是“脏”的,不完整、不一致的,因此必须清理。清理的内容包括填充空缺值、识别孤立点、消除杂音并纠正数据的不一致性。

        数据归纳:有是用于挖掘的数据量特别大,数据挖掘时间很长,这使数据挖掘成为不可能的可能性,所以要进行数据的归约,将大量的数据压缩成可接受范围的数据,并要原                            数据的完整和有效。

        数据集成及变换:数据挖掘往往需要多个不同的数据,因此需把它们通过变换、抽取,集成统一的数据平台工挖掘之用。

        离散化和概念提升:要进行挖掘的数据中往往有的数据属性呈连续值,而有的属性虽然呈离散状态但域值多,不利于分析和挖掘,故需对连续值作离散化处理,而对属性中过                                           于密集的离散值作概念提成,即用更概括的值取代属性中过多的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值