剑指offer系列-T9_5斐波那契数列

/**
 * @author xhl 斐波那契数列 题目描述 大家都知道斐波那契数列, 现在要求输入一个整数n,请你输出斐波那契数列的第n项。 n>=0
 *  本次实现的时间复杂度是o(logn)
 */
public class offerT9_5 {

    /**
     * @param args
     */
    int Fibonacci(int n) {
        if (n == 0)
            return 0;
        if (n == 1)
            return 1;
        return Fibonacci2(n)[0][0];
    }

    /*n>=2时调用矩阵相乘形式*/
    int[][] Fibonacci2(int n) {
        int[][] matrix = { { 1, 1 }, { 1, 0 } };
        int[][] result = new int[matrix.length][matrix[0].length];
        /*
         * result={{Fibonacci(n),Fibonacci(n-1)}{Fibonacci(n-1),Fibonacci(n-2)}}=
         * matrix^(n-1),n>=2
         */
        if ((n - 1) == 1)
            result = matrix;
        else {
            int[][] temp;
            if ((n - 1) % 2 == 0) {
                temp = Fibonacci2((n + 1) / 2);/* 此处注意,n-1为偶数时,拆分为matrix^((n-1)/ 2)的平方,matrix^((n-1)/2)
                                                * 对应的Fibonacci2函数的参数却是((n + 1)/ 2)*/
                result = MatrixMul(temp, temp);
            } else {
                temp = Fibonacci2((n) / 2);
                result = MatrixMul(temp, temp);
                result = MatrixMul(result, matrix);
            }
        }
        return result;

    }

  /*两矩阵乘法计算*/
    int[][] MatrixMul(int[][] a, int[][] b) {

        int[][] result = new int[a.length][b[0].length];

        for (int i = 0; i < a.length; i++)
            for (int j = 0; j < b[0].length; j++)
                for (int k = 0; k < a[0].length; k++)
                    result[i][j] = a[i][k] * b[k][j] + result[i][j];
        return result;

    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        offerT9_5 o = new offerT9_5();
        int res = o.Fibonacci(4);
        System.out.print(res);
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值