/**
* @author xhl 斐波那契数列 题目描述 大家都知道斐波那契数列, 现在要求输入一个整数n,请你输出斐波那契数列的第n项。 n>=0
* 本次实现的时间复杂度是o(logn)
*/
public class offerT9_5 {
/**
* @param args
*/
int Fibonacci(int n) {
if (n == 0)
return 0;
if (n == 1)
return 1;
return Fibonacci2(n)[0][0];
}
/*n>=2时调用矩阵相乘形式*/
int[][] Fibonacci2(int n) {
int[][] matrix = { { 1, 1 }, { 1, 0 } };
int[][] result = new int[matrix.length][matrix[0].length];
/*
* result={{Fibonacci(n),Fibonacci(n-1)}{Fibonacci(n-1),Fibonacci(n-2)}}=
* matrix^(n-1),n>=2
*/
if ((n - 1) == 1)
result = matrix;
else {
int[][] temp;
if ((n - 1) % 2 == 0) {
temp = Fibonacci2((n + 1) / 2);/* 此处注意,n-1为偶数时,拆分为matrix^((n-1)/ 2)的平方,matrix^((n-1)/2)
* 对应的Fibonacci2函数的参数却是((n + 1)/ 2)*/
result = MatrixMul(temp, temp);
} else {
temp = Fibonacci2((n) / 2);
result = MatrixMul(temp, temp);
result = MatrixMul(result, matrix);
}
}
return result;
}
/*两矩阵乘法计算*/
int[][] MatrixMul(int[][] a, int[][] b) {
int[][] result = new int[a.length][b[0].length];
for (int i = 0; i < a.length; i++)
for (int j = 0; j < b[0].length; j++)
for (int k = 0; k < a[0].length; k++)
result[i][j] = a[i][k] * b[k][j] + result[i][j];
return result;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
offerT9_5 o = new offerT9_5();
int res = o.Fibonacci(4);
System.out.print(res);
}
}
剑指offer系列-T9_5斐波那契数列
最新推荐文章于 2016-09-04 11:53:29 发布