题目描述
给定一个 n 行 m 列的地牢,其中 ‘.’ 表示可以通行的位置,’X’ 表示不可通行的障碍,牛牛从 (x0 , y0 ) 位置出发,遍历这个地牢,和一般的游戏所不同的是,他每一步只能按照一些指定的步长遍历地牢,要求每一步都不可以超过地牢的边界,也不能到达障碍上。地牢的出口可能在任意某个可以通行的位置上。牛牛想知道最坏情况下,他需要多少步才可以离开这个地牢。
输入描述:
每个输入包含 1 个测试用例。每个测试用例的第一行包含两个整数 n 和 m(1 <= n, m <= 50),表示地牢的长和宽。接下来的 n 行,每行 m 个字符,描述地牢,地牢将至少包含两个 ‘.’。接下来的一行,包含两个整数 x0, y0,表示牛牛的出发位置(0 <= x0 < n, 0 <= y0 < m,左上角的坐标为 (0, 0),出发位置一定是 ‘.’)。之后的一行包含一个整数 k(0 < k <= 50)表示牛牛合法的步长数,接下来的 k 行,每行两个整数 dx, dy 表示每次可选择移动的行和列步长(-50 <= dx, dy <= 50)
输出描述:
输出一行一个数字表示最坏情况下需要多少次移动可以离开地牢,如果永远无法离开,输出 -1。以下测试用例中,牛牛可以上下左右移动,在所有可通行的位置.上,地牢出口如果被设置在右下角,牛牛想离开需要移动的次数最多,为3次。
示例1
输入
复制
3 3
…
…
…
0 1
4
1 0
0 1
-1 0
0 -1
输出
复制
3
#include<iostream>
#include<limits.h>
#include<queue>
#include<algorithm>
using namespace std;
int n,m,dcnt;
char ground[51][51]={0};
int direction[50][2];
int dis[51][51];
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y):x(_x),y(_y){}
Point go(int i){
return Point(x+direction[i][0],y+direction[i][1]);
}
bool isOK(){
return x>=0&&x<n&&y>=0&&y<m&&ground[x][y]=='.';
}
};
int max(int a,int b)
{
return a>b?a:b;
}
int main()
{
Point start;
cin>>n>>m;
for(int i=0;i<n;++i)
{
cin>>ground[i];
}
cin>>start.x>>start.y;
cin>>dcnt;
for(int i=0;i<dcnt;++i)
{
cin>>direction[i][0]>>direction[i][1];
}
fill(dis[0],dis[50]+51,INT_MAX);
dis[start.x][start.y]=0;
queue<Point> q;
q.push(start);
while(!q.empty())
{
Point x=q.front();q.pop();
for(int i=0;i<dcnt;++i){
Point y=x.go(i);
if(y.isOK()){
if(dis[y.x][y.y]>dis[x.x][x.y]+1){
dis[y.x][y.y]=dis[x.x][x.y]+1;
q.push(y);
}
}
}
}
int ans=0;
for(int i=0;i<n;++i)
{
for(int j=0;j<m;++j)
{
if(ground[i][j]=='.')
ans=max(ans,dis[i][j]);
}
}
ans=(ans==INT_MAX)?-1:ans;
cout<<ans;
return 0;
}
题目中所说的“合法步长”是指一步可以走的距离;
k是说有k种合法步长,每次移动选任意一个步长;