zoj-1203(Prim算法)

MST是一个非常非常经典的问题了,ZOJ-1203则是一题MST的裸题,题目的意思就是给定n个坐标,连起n个点最短是多长。

我用的是prim算法,创建图什么的这个大家都懂。

(好久没写过题解了,不知道说些什么好~哎。)


/***********************************************************
	> OS     : Linux 3.11.10-301.fc20.x86_64 Fedora20
	> Author : yaolong
	> Mail   : dengyaolong@yeah.net 
	> Time   : 2014年07月27日 星期日 13时23分30秒
 **********************************************************/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
using namespace std;
#define INF 1<<30 
class Point{
    public:
        Point(){}
        double x,y;
    double dist(Point &pt){        
        return sqrt((x-pt.x)*(x-pt.x)+(y-pt.y)*(y-pt.y));
    }
};
Point v[105];
double mp[105][105];
double low[105];
bool used[105];
double prim(int n){
    double result=0;
    double min;
    int cnt=n-1;
    int pos,i;
    memset(used,0,sizeof(used));
    //原始点
    used[0]=1;
    for(i=0;i<n;i++){
        low[i]=mp[0][i];
    }

    while(cnt--){
        min=INF;
        for(i=0;i<n;i++){
            if(!used[i]&&low[i]<min){
                pos=i;
                min=low[i];
            }
        }
        result+=min;
        used[pos]=1;
        for(i=0;i<n;i++){
            if(low[i]>mp[pos][i]){
                low[i]=mp[pos][i];
            }
        }
    }
    return result;
}
int main(){
    int n,i,j;
    double x,y;
    int cas=1;
    bool flag=0;
    while(scanf("%d",&n),n){
        if(flag){
            puts("");        
        }else{            
            flag=1;        
        }
        for(i=0;i<n;i++){
            scanf("%lf%lf",&v[i].x,&v[i].y);
                    
        }
        for(i=0;i<n-1;i++){
            for(j=i+1;j<n;j++){
                mp[i][j]=mp[j][i]=v[i].dist(v[j]);
            }
        }
        printf("Case #%d:\n",cas);
        cas++;
        printf("The minimal distance is: %.2lf\n",prim(n));
    }

   
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值