Flink 从0到1实战实时风控系统-完结14章
什么是风控系统?
风控系统是指一系列的完整的风险控制,以保证事情向好的方向发展,而免受不可预估的经济和财产损失而措手不及。
风控类型
风控类型一般分为事前、事中、事后三种。
事前风控是指在交易指令发送到交易所前,对交易指令进行风险检测,通过检测的交易指令则提交到交易模块进行报单,未通过检测的交易指令将直接予以拒绝。对于追求低延时的交易策略,事前风控需要在极短的时间内完成。
事中风控主要是指在交易过程中,交易团队对策略的信号生成、执行情况进行监控以及盘中对策略的风险度进行实时监控。
事后风控是对交易数据在盘后进行分析,比如策略算法是否存在错误、策略的回撤是否可控、是否有计划外的持仓出现等,从而制定更严谨的业务风控预案和优化代码算法调整策略表现。
在src文件夹中创建一个新文件,文件命名为“AppState.tsx”,我们将会在这个文件中创建全局state和上下文组件contex component。
鸿蒙系统实战短视频App 从0到1掌握HarmonyOS完结14章
实际搭建流程:
下载鸿蒙源码 → docker拉取镜像 → 创建容器 → 进入容器 → 下载hb编译工具(也可使用build.sh、build.py脚本编译,但是不如hb辅助工具指令好用)→ 编译(内核、芯片厂商的uboot、系统镜像 ...)
1. 准备开发环境:
首先,您需要设置用于鸿蒙应用程序开发的开发环境。
2. 学习鸿蒙应用程序开发:
了解鸿蒙应用程序开发的基础知识,包括鸿蒙应用程序的架构、UI设计和鸿蒙系统的特性。
3. 开发应用程序:
使用鸿蒙开发工具,开始编写您的应用程序代码。您可以创建各种类型的应用程序,包括手机应用、平板电脑应用、电视应用、手表应用等。
4. 设计用户界面:
使用鸿蒙的UI组件和工具,设计用户界面。鸿蒙提供了一套UI框架,可以帮助您创建吸引人的用户界面。
5. 数据处理和功能开发:
根据您的应用程序需求,编写数据处理逻辑和应用程序功能。鸿蒙支持多种编程语言,包括Java、C、C++和JS。
6. 测试和调试:
在真机或模拟器上测试您的应用程序,以确保它正常运行。鸿蒙提供了调试工具,以帮助您发现和解决问题。
7. 发布应用程序:
一旦应用
WPF框架系列课程(小白进阶选择)下载分享
WPF 主要编程模型通过托管代码公开。 在 WPF 的早期设计阶段,曾有过大量关于如何界定系统的托管组件和非托管组件的争论。 CLR 提供一系列的功能,可以提高开发效率和可靠性(包括内存管理、错误处理和通用类型系统等),但这是需要付出代价的。
PresentationFramework、PresentationCore 和 milcore是 WPF 的主要代码部分。 在这些组件中,只有一个是非托管组件 - milcore。 milcore 是以非托管代码编写的,目的是实现与 DirectX 的紧密集成。 WPF 中的所有显示均通过 DirectX 引擎完成,因此硬件和软件呈现都很高效。 WPF 还要求对内存和执行进行精细控制。 milcore 中的组合引擎受性能影响极大,需要放弃 CLR 的许多优点来提高性能。
生成 WPF 时使用的主要体系结构原理之一是首选属性而不是方法或事件。 属性具有声明性,可更方便地指定用途而不是操作。 它还支持模型驱动或数据驱动的系统,以显示用户界面内容。 这种理念的预期效果是创建更多可以绑定到的属性,从而更好地控制应用程序的行为。
技术大牛成长课,从0到1带你手写一个数据库系统完结11章
大家好,今天我将给大家分享关于如何开发一个数据库系统的知识,将从0到1手把手带着一步步去开发这个项目,希望我的分享对大家的学习和工作有所帮助,如果有不足的地方还请大家多多指正。
一、什么是数据库系统
数据库系统一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员构成
二、数据库管理系统的主要功能包括
数据定义功能:DBMS提供数据定义语言(Data Definition Language,DDL),用户通过它可以方便地对数据库中的对象进行定义
数据组织、存储和管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、数据的存取路径等。
数据操纵功能:DBMS提-供数据操纵语言(Data Manipulation Language,DML),用户可以使用DML操纵数据,实现对数据库的基本操作,如查询、插入、删除和修改等
数据库的事务管理和运行管理:数据库在建立、运用和维护时由数据管理系统统一管理、统一控制,以保证数据的安全性、完整性、多用户对数据的并发使用以及发生故障后的系统恢复
数据库建立和维护功能:数据库初始数据的输入、转换功能,数据库的转储、恢复功
首个基于Transformer的分割检测+视觉大模型视频课程(附源码+课件)
众所周知,视觉系统对于理解和推理视觉场景的组成特性至关重要。这个领域的挑战在于对象之间的复杂关系、位置、歧义、以及现实环境中的变化等。作为人类,我们可以很轻松地借助各种模态,包括但不仅限于视觉、语言、声音等来理解和感知这个世界。现如今,随着 Transformer 等关键技术的提出,以往看似独立的各个方向也逐渐紧密地联结到一起,组成了“多模态”的概念。
多功能
通过引入灵活的提示引擎,包括点、框、涂鸦 (scribbles)、掩模、文本和另一幅图像的相关区域,实现多功能性;
可组合
通过学习联合视觉-语义空间,为视觉和文本提示组合实时查询,实现组合性,如图1所示;
可交互
通过结合可学习的记忆提示进行交互,实现通过掩模 引导的交叉注意力保留对话历史信息;
语义感知
通过使用文本编码器对文本查询和掩模标签进行编码,实现面向开放词汇分割的语义感知。
超大规模视觉通用感知模型由超大规模图像、文本主干网络以及多任务兼容解码网络组成,它基于海量的图像和文本数据构成的大规模数据集进行预训练,用于处理多个不同的图像、图像-文本任务。此外,借助知识迁移技术能够实现业务侧小模型部署。
超大规模视觉
基于SpringBoot3.x+Vue3.x整合从0到1一步一步实现酒店管理系统课程下载
基于SpringBoot3.x+Vue3.x整合从0到1一步一步实现酒店管理系统,本系统主要分前台和后台,其中:
前台主要功能有:注册和登录,首页信息展示、列表页信息展示、详情页信息展示、会员预订房间、会员中心、个人信息修改、我的预订、我的充值记录等。
后台主要功能有:后台首页展示、个人信息展示和修改、用户管理、角色管理、日志管理、楼层管理、房间类型管理、房间管理、入住管理、会员管理、日历房态、预订管理等。
第1章 开发环境搭建及功能展示
第2章 房间类型管理功能实现
第3章楼层管理功能实现
第4章房间管理功能实现
第5章会员管理功能实现
第6章预订管理功能实现
第8章前台首页功能实现
第9章前台列表页功能实现
第10章前台注册和登录功能实现
第11章前台详情页功能实现
第12章前台会员中心功能实现
第13章房态管理功能实现
第14章系统后台首页功能实现
前言
因为工作需要,要搭建一套非微服务的单体应用,主要场景是针对中小型企业或者客户,并发量不高、数据量也比较有限的情况。在使用ruoyi等框架的时候,总感觉有些地方还是用不太顺手。因此也根据个人习惯,在开发项目的同时,尽量整理输
Blender建模高级教程
Blender建模高级教程2023下载,Blender 是一款永久开源免费的 3D 创作软件,支持整个 3D 创作流程:建模、雕刻、骨骼装配、动画、模拟、实时渲染、合成和运动跟踪,甚至可用作视频编辑及游戏创建。
以上就是 Blender 官方的介绍,看完后是否有种似懂非懂的感觉?
没看懂也没关系,接下来,我会从 Blender 究竟能做什么入手,和你一起好好梳理一下,相信看完这篇文章,你一定会对 Blender 有个清晰的认识。
C4D虽然好,但是Blender免费且开源,这一白嫖优势就没有多少同类软件可以做到。开源并不是意味着你自己需要亲自动手写代码,而是有大量优质且免费的插件各路大神已经写好了,可以补充Blender本身的短板。本文主要分功能模块全面介绍一下 Blender ,同时会介绍一些非常能打的参数化和节点化插件,例如早已内嵌到Blender里面的 Tissue(免费),俄罗斯大神们开发的 Sverchok(免费),在Geometry nodes 成熟前就已经非常强大的 Animation node(免费),等等。
Blender 3D可视化建模(Three.js)
分享Blender视频教程——Blender 3D可视化建模(Three.js),视频+素材资料下载
Blender是一款免费开源三维图形图像软件,提供从建模、动画、材质、渲染、到音频处理、视频剪辑等一系列动画短片制作解决方案。
Blender拥有方便在不同工作下使用的多种用户界面,内置绿屏抠像、摄像机反向跟踪、遮罩处理、后期结点合成等高级影视解决方案。Blender内置有Cycles渲染器与实时渲染引擎EEVEE 。同时还支持多种第三方渲染器。
主要功能
Blender 是一个完整集成的 3D 创作套件,提供了大量的基础工具,包括 建模 、 渲染 、 动画 & 绑定 、 视频编辑 、 视觉效果 、 合成 、 贴图, 以及多种类型的 模拟。
跨平台,使用了 OpenGL 的 GUI 可以在所有主流平台上都表现出一致的显示效果 (并且可通过 Python 脚本来自定义界面)。
高质量的 3D 架构,带来了快速且高效的工作流。
活跃的社区支持, blender.org/community 收录了大量的站点列表。
体积小巧,便于分发。
AIGC与NLP大模型实战-经典CV与NLP大模型及其下游应用任务实现课程
AIGC与NLP大模型实战-经典CV与NLP大模型及其下游应用任务实现课程,视频,源码,课件下载,2023最新
完结19章多层次构建企业级大数据平台, 成就全能型大数据开发
多层次构建企业级大数据平台, 成就全能型大数据开发视频教程下载,2023年7月已完结19章,视频+源码下载!
关于大数据开发工程师需要具备的技能,需要充分了解一下当前大数据的几个就业方向,可以参考下主流互联网行业的部门架构、职责和JD,大数据开发工程师,总体来说有这么几类,不同的公司叫法不一样:
① 数仓开发工程师
② 算法挖掘工程师
③ 大数据平台开发工程师(应用)
④ 大数据前端开发工程师
Blender建模进阶教程-Blender视频教程下载
Blender建模进阶教程|Blender视频教程下载
PostgreSQL DBA实战视频教程
PostgreSQL DBA实战视频教程2023|PostgreSQL1 4.6教程
课程1、PostgreSQL安装与管理
课程2、PostgreSQL数据库SQL基础
课程3、PostgreSQL表详解
课程4、PostgreSQL索引详解
课程5、PostgreSQL对象管理
课程6、PostgreSQL安全管理
课程7、PostgreSQL并发控制
文档资料
实战Flink+Doris实时数仓
实战Flink+Doris实时数仓课程2023,视频+源码+文档+虚拟机下载。
微软BI SSIS 2012 ETL 控件与案例精讲
微软BI SSIS 2012 ETL 控件与案例精讲视频教程
深度学习-TensorRT模型部署实战
本课程划分为四部分:
第一部分精简CUDA-驱动API:学习CUDA驱动API的使用,错误处理方法,上下文管理方法,了解驱动API所处位置,CUDA的开发习惯。
第二部分精简CUDA-运行时API:学习CUDA运行时API的使用,力求精简,力求够用,学会编写核函数加速模型预处理(仿射变换),学习yolov5的后处理加速方法,共享内存的使用。
第三部分tensorRT基础:学习tensorRT的模型编译、推理流程,onnx解析器的使用,学习onnx的结构和编辑修改方法,学习int8量化,插件开发流程,简化的插件开发方法,学习动态shape的应用。
第四部分tensorRT高级:以项目驱动,学习大量具体的项目案例(分类器、目标检测、姿态检测、场景分割、道路分割、深度估计、车道线检测、huggingface、insightface、mmdetection、onnxruntime、openvino),学习针对深度学习需要的封装技术、多线程技术、框架设计技术。
深度学习-图神经网络实战
分享一套图神经网络视频教程——《深度学习-图神经网络实战》,视频+源码+数据+文档资料下载!
《深度学习-图神经网络实战》课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。内容主要包括三个模块:
1、图神经⽹络经典算法解读,详细解读GNN,GCN,注意⼒机制图模型等算法 ;
2 、图神经⽹络框架PyTorch-Geometric,全程实战解读图神经⽹络框架应⽤⽅法;
3 、图神经⽹络项⽬实战,基于真实数据集与实际项⽬展开图数据集构建与模型训练并应⽤到实际场景中。
整体⻛格通俗易懂,提供全部数据与代码。
零基础征服数据结构算法Python版2023
分享一套python版的数据结构算法的视频教程——《零基础征服数据结构算法Python版》,2023年4月完结新课,提供配套的代码和课件下载!
《零基础征服数据结构算法Python版》课程以985院校为授课标准,结合大厂面试所需技能,课程具有严谨、知识面广、通俗易懂、理论与实践相结合的特点,能够帮助学员在轻松的学习过程中征服数据结构与算法。
不管你是在校学生,还是已入职场多年,《零基础征服数据结构算法Python版》课程都能让你对数据结构与算法有更深刻的认识,学完后你会明白生活中一些常用软件的技术原理,甚至能从事算法相关工作,更能帮助你顺利通过大厂面试算法关。一起提升编程内功,冲击BAT!
第1章 绪论
第2章 线性表
第3章 栈、队列和数组
第4章 字符串
第5章 树与二叉树
第6章 图
第7章 查找
第8章 排序
NLP实战-Huggingface神器
分享一套Huggingface视频教程——《NLP实战-Huggingface神器》,视频+源码+课件下载!通俗讲解NLP领域当下各大主流模型,全部基于transformer架构展开分析与应用。全程基于huggingface神器进行实战,快速上手完成NLP领域各核心项目,内容全面覆盖各大实际应用场景,主要包括分类模型,生成模型,NER,关系抽取,文本大模型,摘要与对话等业务场景。
第1章 Huggingface与NLP介绍解读
第2章 Transformer工具包基本操作实例解读
第3章 Transformer核心架构
第4章 BERT系列算法解读
第5章 文本标注工具与NER实例
第6章 文本预训练模型构建实例
第7章 GPT系列算法
第8章 GPT训练与预测部署流程
第9章 文本摘要建模
第10章 图谱知识抽取实战
第11章 补充Huggingface数据集制作方法实例
深度学习-无人驾驶实战
给大家分享一套无人驾驶实战的视频教程——《深度学习-无人驾驶实战》,附源码+课件下载。课程通俗讲解无人驾驶领域中经典应用场景及其技术实现,结合最新论文与前沿算法解读当下主流技术与落地方法,源码级别分析项目实现流程与核心架构复现细节。
课程全部项目均采用真实数据集与实际应用场景,主要包括深度估计,车道线检测,BEV特征空间构建,轨迹预测,三维重建等场景。
第1章 深度估计算法原理解读
第2章 深度估计项目实战
第3章 车道线检测算法与论文解读
第4章 基于深度学习的车道线检测项目实战
第5章 商汤LoFTR算法解读
第6章 局部特征关键点匹配实战
第7章 三维重建应用与坐标系基础
第8章 NeuralRecon算法解读
第9章 NeuralRecon项目环境配置
第10章 10-NeuralRecon项目源码解读
第11章 TSDF算法与应用
第12章 TSDF实战案例
第13章 轨迹估计算法与论文解读
第14章 轨迹估计预测实战
第15章 特斯拉无人驾驶解读
第16章 BEV感知特征空间算法解读
第17章 BEVformer项目源码解读
Go+Golang+Beego微服务基础实战课程
分享Go+Golang+Beego微服务基础实战课程,视频+源码+课件
JMeter高级性能测试实战(30章完整版)
JMeter高级性能测试实战视频教程(30章完整版)
Pytest全栈自动化测试指南2023
Pytest全栈自动化测试指南视频课程,2023版