POJ 1142 A Walk Through the Forest ( 最短路 +记忆化搜索)

这篇博客讲述了POJ 1142题目的解题过程,重点在于理解题目要求的是从起点1到终点2的路径中,每个点的最短距离必须递减。作者首先使用SPFA或Bellman-Ford算法求出2到所有点的最短距离,然后通过DFS结合记忆化搜索寻找符合要求的递减路径。最终,作者提到该算法在解决此问题时的效率,实现了31MS的运行时间。
摘要由CSDN通过智能技术生成

此题,弄了几个小时,做完之后都说 那个题很水, 不过这个题 无关水与不水。 题意读错,开始 结合样例 ,认为是求有几条不同路径的最短路。 

但是,不是   ” He considers taking a path from A to B to be progress if there exists a route from B to his home that is shorter than any possible route from A. “

是从起点1 到终点2 的路径中的经过的每一个点的dis[]都是递减的才可以算作一个所求的路径。

先 spfa或 bellman 求出2到没点的距离,再DFS 求可行的递减路径, 别忘了记忆化搜索。

SPFA算法  31MS

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
using namespace std;
#define PI acos
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值