【MATLAB】PSO优化RBFNN程序(带注释)

自网上下载的PSO优化RBFNN的程序,发现没有注释,搜了下也没搜到这个程序的解释,于是乎自己写了下,按照自己理解的意思写的,有些地方也没弄清楚,放在这与大家交流,有问题欢迎留言。

显示主程序:

clear all
close all
%G为迭代次数,n为个体长度(包括12个参数),m为总群规模
%w,c1,c2为粒子群算法中的参数
G =700;
n = 12;%个体长度,一个粒子的长度
m = 20;
w = 0.1;%惯性权重
c1 = 2;
c2 = 2;
%设置粒子的最小位置与最大位置
for i = 1:3
    MinX(i) = 0.1*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 4:1:9
    MinX(i) = -3*ones(1);
    MaxX(i) = 3*ones(1);
end
for i = 10:1:12
    MinX(i) = -ones(1);
    MaxX(i) = ones(1);
end
%产生初始粒子位置
pop = rands(m,n);%m:20个粒子。n:每个粒子可以设置12个值
for i = 1:m%对超过范围的粒子,进行处理
    for j = 1:3
        if pop(i,j) < MinX(j)
            pop(i,j) = MinX(j);
        end
        if pop(i,j) > MaxX(j)
            pop(i,j) = MaxX(j);
        end
    end
    for j = 4:9
        if pop(i,j) < MinX(j)
            pop(i,j) = MinX(j);
        end
        if pop(i,j) > MaxX(j)
            pop(i,j) = MaxX(j);
        end
    end
    for j = 10:12
        if pop(i,j) < MinX(j)
            pop(i,j) = MinX(j);
        end
        if pop(i,j) > MaxX(j)
            pop(i,j) = MaxX(j);
        end
    end
end
        
%初始化速度
V = 0.1*rands(m,n);%20行12列,每个粒子的每个值设置一个初始的速度,0,1为惯性权重
BsJ = 0;  %误差的和,函数的返回值,值越小,说明得到的权值效果越好。即适应度值,适应度函数为神经网络输出与期望输出的差值的总和

%根据初始化的种群计算个体好坏,找出群体最优和个体最优
for s = 1:m%粒子群规模
    indivi = pop(s,:);%取一个粒子,为一个行向量
    [indivi,BsJ] = chap10_3b(indivi,BsJ);%调用
    Error(s) = BsJ;%将次粒子的误差和赋值
end

[OderEr,IndexEr] = sort(Error);%将Error数组按升序排列
Error;
Errorleast = OderEr(1);%将最小值赋值
for i = 1:m%种群规模
    if Errorleast == Error(i)
        gbest = pop(i,:);%将第i个粒子赋值给gbest,即全局最优位置
        break;
    end
end
ibest = pop;%个体极值


for kg = 1:G%迭代次数
    kg
    for s = 1:m;%种群规模
%个体有4%的变异概率        
        for j = 1:n%粒子长度
            for i = 1:m%种群规模,变异是针对某个粒子的某一个值的变异
                if rand(1)<0.04
                    pop(i,j) = rands(1);
                end
            end
        end
%r1,r2为粒子群算法参数        
        r1 = rand(1);%产生一个0-1之间的随机数
        r2 = rand(1);
%个体和速度更新        
        V(s,:) = w*V(s,:) + c1*r1*(ibest(s,:)-pop(s,:)) + c2*r2*(gbest-pop(s,:));%w为惯性权重
        pop(s,:) = pop(s,:) + 0.3*V(s,:);%有些地方加速度那里的03也为0.5,感觉像乘以时间
        %对更新的位置进行判断,超过设定的范围就处理下。粒子中不同的值对应不同的范围
        for j = 1:3
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 4:9
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
        for j = 10:12
            if pop(s,j) < MinX(j)
                pop(s,j) = MinX(j);
            end
            if pop(s,j) > MaxX(j)
                pop(s,j) = MaxX(j);
            end
        end
%求更新后的每个个体适应度值        
        [pop(s,:),BsJ] = chap10_3b(pop(s,:),BsJ);%输入为当前的粒子与上一个粒子对应的适应度值。输出为当前的粒子与当前粒子对应的适应度值
        error(s) = BsJ;%将当前粒子对应的适应度值赋值给误差数组
%根据适应度值对个体最优和群体最优进行更新        
        if error(s)<Error(s)
            ibest(s,:) = pop(s,:);
            Error(s) = error(s);
        end
        if error(s)<Errorleast
            gbest = pop(s,:);
            Errorleast = error(s);
        end
    end
    
    Best(kg) = Errorleast;
end
plot(Best);

save pfile1 gbest;
    


函数:chap10_3b

%=======写在前面的注解===============
%此函数相当于是神经网路的训练,而在粒子群算法中,相当于是每更新一次粒子(循环一次),就训练一回神经网络(给定的输入和输出不变,让神经网络预测)。所以粒子群迭代几次,就让神经网络训练几次。
%RBF网络,由chap10_3a调用,返回值B为误差的和,和越小,说明得到的权值越好
function [p,BsJ] = rbf_gaf(p,BsJ)
ts = 0.001;
alfa = 0.05;
xite = 0.85;
x = [0,0]';%网络的输入初值
b = [p(1);p(2);p(3)];%各神经元的方差
c = [p(4) p(5) p(6);%基函数的中心,若网络为两输入的话,那么每个神经元的中心也是两维的列向量
     p(7) p(8) p(9)];
w = [p(10);p(11);p(12)];%各神经元到输出的权值,网络为一输出
w_1 = w;w_2 = w_1;
c_1 = c;c_2 = c_1;
b_1 = b;b_2 = b_1;
y_1 = 0;
for k = 1:1:400%这个时间的循环????
    timef(k) = k*ts;    %感觉这个值没什么用。   
    u(k) = sin(5*2*pi*k*ts); 
    y(k) = u(k)^3 + y_1/(1 + y_1^2);  %获得的是期望输出的值  
    x(1) = u(k);%将u(k)赋值给第一个输入
    x(2) = y(k);%将y(k),即期望输出赋值给第二个人输入,为什么要这样赋值。。。
    for j = 1:1:3%计算激活函数
        h(j) = exp(-norm(x - c(:,j))^2/(2*b(j)*b(j)));%c与b代表的是各神经元中心与方差,h为神经元的激活函数
    end
    ym(k) = w_1'*h';%权值与激活函数相乘 ,计算此次算出的输出,循环400此的话,一次训练产生400个输出。  
    e(k) = y(k) - ym(k);%计算每一次神经网络输出与期望输出的差值
    d_w = 0*w;d_b = 0*b;d_c = 0*c;%乘以0全变为0,d_w,d_b,d_c三个值不造是干嘛的
    for j = 1:1:3%计算d_w,d_b,d_c,但是没有找到这方面的公式。。。。
        d_w(j) = xite*e(k)*h(j);%计算权值的增量,根据设置的参数,输出误差与激活函数
        d_b(j) = xite*e(k)*w(j)*h(j)*(b(j)^-3)*norm(x-c(:,j))^2;%计算方差的增量,根据设置的参数,输出误差,此刻的权值、激活函数,此时的方差、此时的输入与中心的差值的二范数
        for i = 1:1:2%计算中心的增量,根据设置的参数,此刻的权值、激活函数,输入与中心的差值,方差。
            d_c(i,j) = xite*e(k)*w(j)*h(j)*(x(i) - c(i,j))*(b(j)^-2);
        end
    end    
    w = w_1 + d_w + alfa*(w_1 - w_2);%w_1与w_2之前赋值了w,后面在没变,d_w等值在前面有e(k)与h(j)更新,用来计算权值
    b = b_1 + d_b + alfa*(b_1 - b_2);
    c = c_1 + d_c + alfa*(c_1 - c_2);    
    y_1 = y(k);
    w_2 = w_1;
    w_1 = w;    
    c_2 = c_1;
    c_1 = c;    
    b_2 = b_1;
    b_1 = b;
end
B = 0;
for i = 1:1:400%计算误差的和,
    Ji(i) = abs(e(i));
    B = B + 100*Ji(i);%乘100是什么意思?
end
BsJ = B;
    
    

其中也有一些地方,感觉写的复杂了,比如在初始化的种群中,寻找全局极值与个体极值那里,对最小适应度的寻找,以及神经网络训练函数输入参数的设置,感觉输入可以不用设置BsJ,输出可以不用设置pop()。如有遗漏,欢迎大家指出。

代码下载地址:http://download.csdn.net/download/u011067793/10150280


评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值