深度学习
文章平均质量分 68
快剑青衣
这个作者很懒,什么都没留下…
展开
-
模型训练的技巧
1、将损失和循环次数画出来,有利于debug2、调超参的时候,可以先设置较大步数,然后找一个表现比较好的小区间,这样一步步进行,区间越来越窄,最后选出表现最好的参数,而且我们一般使用随机数来从区间中选取超参数来验证,而不是按确定的步长去参数。3、训练的时候可以先训练一小部分数据来验证模型有没有异常,确认你可以对这小部分数据过拟合即对这小部分数据的预测达到100%准确,这样的话就验证了我们的反向传播...原创 2018-06-04 23:40:29 · 1676 阅读 · 0 评论 -
神经网络
一、模型1、一般结构: full connection - BN - activation - … - full connection - loss function 其中activation一般是非线性函数,可以让神经网络直逼任何函数 BN是为了防止过拟合,以及梯度消失和爆炸的问题2、相关代码:full connection def affine_forward(...原创 2018-06-04 23:55:51 · 394 阅读 · 0 评论 -
卷积神经网络
卷积层每个滤波器作用得到激活图,激活图 中白色表示响应强烈的部分,黑色表示响应弱的部分只有原图尺寸减去滤波器尺寸得到值N,N可整除的步长stride才是有效的步长如果滤波器尺寸为F*F, stride为1,那么如果在输入图补(F - 1) / 2 圈0值像素,得到的激活图可以和输入图尺寸不变滤波器的数目K一般是2的指数,因为当这个值是2的指数的时候有些库会使用特殊的计算方式,计算效率会大大提高之所...原创 2018-06-05 13:09:16 · 350 阅读 · 0 评论 -
R-CNN
R-CNN进化过程:R-CNN > Fast R-CNN > Faster R-CNNR-CNN对每个推荐区域进行卷积,而Fast R-CNN对整个输入图片进行卷积,使用区域推荐网络替代之前的区域推荐方法找出候选框(可能含有物体的框),这些框可以互相重叠互相包含的,这样我们就可以避免暴力枚举所有框了,然后对于这些候选框,进行类型识别Faster R-CNN:加入一个提取边缘的神经网络...原创 2018-06-05 20:36:05 · 290 阅读 · 2 评论 -
小记
1、sess.run(tf.global_variables_initializer()) 作用是初始化模型的参数,具体如下:tf.global_variables_initializer()里面调用了global_variables()返回一个variable list,然后再调用variable_initializer() 将variable list里面每个元素的initializer属性...原创 2018-06-05 23:04:45 · 264 阅读 · 0 评论 -
cv2阈值处理
一、全局阈值:为整个图片指定一个阈值,函数为cv2.threshold(src, thresh, maxval, type, dst=None)src: 原图(灰图)thresh: 阈值maxval: 给#THRESH_BINARY and #THRESH_BINARY_INV模式使用的最大值type:二值化的类型cv2.THRESH_BINARY 超过阈值部分取maxval(...原创 2018-06-10 11:15:03 · 4345 阅读 · 0 评论 -
Numpy中stack(),hstack(),vstack()函数详解
一、stack()例子如下:import numpy as np a = [1,2,3] b = [4,5,6] np.stack((a,b),axis=0) >>> array([[1, 2, 3], [4, 5, 6]]) np.stack((a,b),axis=1) >>> array([[1, 4], [2, 5], ...原创 2018-06-19 12:02:14 · 832 阅读 · 0 评论