NYOJ 708 ones

题目链接~~>

做题感悟:开始以为只要把一个数分成尽量相等的两个数相乘就可以了,其实大部分数据都对。

解题思路:如果n是素数则 f [ n ] = f [ n-1]+1 ,否则 遍历n的约数找最小的。f [ n ] = min ( f [ n-1 ]+1,f [ j ] + f [ n / j ] ) .

代码(本人):

#include<stdio.h>
#include<iostream>
#include<map>
#include<string>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std ;
const int MX = 10005 ;
int f[MX] ;
bool is_prime[MX] ;
int prime[MX],num ;
void init()
{
    num=0 ;
    memset(is_prime,false,sizeof(is_prime)) ;
    for(int i=2 ;i<MX ;i++)
    {
        if(!is_prime[i])
               prime[num++]=i ;
        for(int j=0 ;j<num&&i*prime[j]<MX ;j++)
        {
            is_prime[i*prime[j]]=true ;
            if(i%prime[j]==0)
                    break ;
        }
    }
}
int min(int x,int y)
{
    return x < y ? x : y ;
}
void pret()
{
    memset(f,0,sizeof(f)) ;
    f[1]=1 ; f[2]=2 ; f[3]=3 ; f[4]=4 ;
    for(int i=5 ;i<MX ;i++)
      if(is_prime[i])
      {
          f[i]=f[i-1]+1 ;
          for(int j=2 ;j<=sqrt(i) ;j++)
            if(i%j==0)
               f[i]=min(f[i],f[j]+f[i/j]) ;
      }
      else
             f[i]=f[i-1]+1 ;
}
int main()
{
    init() ;
    pret() ;
    int n ;
    while(~scanf("%d",&n))
        printf("%d\n",f[n]) ;
        return 0 ;
}

优代码:

 
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int dp[10005]={0,1,2,3,4,5,0,0,0};
int main()
{
    int n,i,j;
    for(i=6;i<10005;i++)
    {
        dp[i]=dp[i-1]+1;
        for(j=2;j*j<=i;j++)
        {
            if(i%j==0)
            {
                dp[i]=min(dp[i],dp[j]+dp[i/j]);
            }
        }
    }
    while(scanf("%d",&n)!=EOF)
    {
        printf("%d\n",dp[n]);
    }
}
     


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Linux猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值