如何查找和阅读综述性的文章

本文介绍三种有效的综述文献检索方法,包括使用特定关键词、通过SCI数据库筛选及定位专业综述期刊,并提供四步骤高效阅读指导。

 转自http://blog.sina.com.cn/s/blog_4ded56360100wlwo.html

查找 综述类文献 的方法有三种:

第一种:直接用内容关键字+“overview、survey”这样的词,在各大数据库、google中直接搜索。

这种方法的优点是简单。缺点有二:第一,有时搜索的内容比较多,容易陷入文献之海;第二,有些综述类的文献并没有overview、survey这样的字眼,容易把这样的文献漏掉。

第二种:直接用内容关键字在SCI中检索。

由于被SCI检索的文献,当其参考文献多余一个值时(具体是多少我不知道),就将其归为综述类的文献。当我们用内容关键字搜索之后,利用SCI的文献分析功能,选定文献类型为survey进行二次检索就可以得到关于某方面内容的综述类文献了。而且,我们还可以根据文献的被引次数,判断文献的分量。

第三种:在专门刊登综述类文献的期刊中检索。

有些期刊是专门刊登综述类文章的,我们可以利用“内容关键字+指定期刊”的方式直接找到所需要的综述类文献。这种方法的优点是文献的质量比较好。这种专门刊登综述类期刊的综述文章,相对于一般期刊而言,无论是综述文献的作者,还是综述的专业水准上都要高一些。

在通信领域中,适合初学者,专门刊登综述类文献的期刊是:

1.Proceeding of the IEEE——这个期刊内容比较多,通信只是其中的一个方面

2.IEEE Signal Processing Magazine——正如期刊名称一样,这个期刊主要是信号处理方向

3.IEEE Communications Survey & Tutorials——通信类的综述期刊,可以在IEEE的搜索中,利用“内容关键字+指定期刊”的方式找到所需的综述类文献。

第1步 读一篇综述论文首先从摘要读起,然后读结论。如果你能读懂摘要和结论,那么再开始读introduction。

第2步 当你读完introduction之后,如果还饶有兴趣,那么可以继续读正文部分;否则如果没产生兴趣,那么正文部分就不用读了。在读introduction的时候,在脑子里尽量形成一些框架式的结构,如综述所阐述问题的结构是什么样的、文章的组织结构是什么样的。

第3步 读完一篇综述文章后,如果你对这篇文章里面讲到的内容有60%以上能看明白,而且有兴趣想沿着这个方向尝试着做下去,你需要做的是把introduction里面提到的参考文献从IEEE上面下载下来读一读(注意是introduction里面的参考文献,而不是所有参考文献)。这一点是我之前没有注意到的,一篇好综述的introduction部分,其中所引用的文献往往是这个领域中具有标志性意义的文献,也就是通常所说的经典文献。

第4步 当你读完一定数量的参考文献之后(大概8篇左右),你就对这个领域最前沿的研究现状小有了解了。接下来要做的就是问问自己对这个方向有没有什么新想法,可以是对已有算法的改进、对现有假设条件的调整等等。除非你是牛人或者基础知识非常扎实,通常你在开始一个新的领域后的最初一段时间内不会有太多的创意(因为你还是懂的太少),这时候你需要做的就是不断重复读已经读过的参考文献,以及参考文献中的参考文献,参考文献的参考文献……直到你能够提出新的思路和想法。通常如果你能保证把一篇综述的10篇参考文献都读过,每篇理解度在70%以上,或者6篇都读过,每篇理解读在90%以上,我相信你就自然而然有新想法出来了。


### 视觉大模型综述文章的最新研究 视觉大模型的研究近年来取得了显著进展,涵盖了多个方面的问题挑战。例如,评估基准测试的困难、对现实世界理解的差距、对上下文理解的局限、偏差、易受对抗攻击以及可解释问题均被广泛讨论[^1]。此外,最新的视觉语言模型(VLMs)通过结合预训练的视觉语言模型,实现了跨模态的有效桥接[^2]。 在综述文章方面,可以参考以下几资源: 1. **GitHub 综合列表** 一个全面的基础模型列表可以在 GitHub 仓库中找到,该仓库整理了计算机视觉领域的基础模型及其应用。具体链接为:https://github.com/awaisrauf/Awesome-CV-Foundational-Models[^1]。此资源不仅包括模型本身,还涵盖了许多相关的论文工具。 2. **CogVLM 模型架构** CogVLM 是一种先进的视觉语言模型,它通过在每个 Transformer 层中插入视觉专家模块,实现了视觉语言特征的双重交互与融合[^3]。这种设计使得模型能够更有效地处理多模态任务。 3. **学术期刊会议论文** 最新的综述文章通常发表在顶级学术期刊会议上,如 CVPR、ICCV、ECCV NeurIPS。这些会议的文章通常会总结当前的技术状态,并提出未来的研究方向。例如,CVPR 2023 ICCV 2023 的论文集可能包含关于视觉大模型的最新综述。 4. **在线预印本平台** 平台如 arXiv 提供了大量的预印本文章,其中许多是对视觉大模型的深入分析。可以通过搜索关键词“Vision Foundation Models Review”或似术语来查找最新的综述文章。 以下是实现视觉大模型的一个简单代码示例,展示如何加载预训练模型并进行推理: ```python from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image # 加载预训练模型 model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # 图像预处理 image = Image.open("example_image.jpg") pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values # 模型推理 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) pixel_values = pixel_values.to(device) generated_ids = model.generate(pixel_values, max_length=16) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值