本文的阅读等级:初级
法国数学家范德蒙(Alexandre-Théophile Vandermonde) 是行列式的奠基者之一,他在十八世纪提出行列式专有符号,将行列式应用于解线性方程组,并且对行列式理论进行了开创性的研究。两百多年后,他的名字因为一个特殊矩阵而经常被提及。Vandermonde 矩阵具有以下形式:
,
其中是一个
阶矩阵,各元为
。同样地,
也称为Vandermonde矩阵。
下面我们推导Vandermonde 矩阵的行列式。先看2 阶行列式
。
接着,考虑3 阶行列式,以基本列运算化简再用余因子(cofactor) 展开计算,可得
这时我们大胆猜测阶Vandermonde矩阵的行列式计算公式如下:
。
证明推导使用数学归纳法。假设阶Vandermonde行列式为
,
我们要证明阶Vandermonde行列式也有相同的形式。将
的最末列替换为
,设此矩阵的行列式为
,亦即
。
由最末列的余因子展开式可知为变数
的
次多项式。若矩阵有相同的两列,其行列式等于零,故
,
,也就是说
,
,为多项式
的
个根,
可表示为
,
上式中为非零常数,剩下的问题是决定
。
由的余因子展开式可得到
的系数,也就是
的值,
。
注意,上面的行列式即为。根据归纳法的假设,就有
。
还有一个不能错过的事实:。将
代入上式,
。
整理等号右端,得到
,
故证明所求。
Vandermonde矩阵常见于数值分析的内插(interpolation)问题。给出个资料点
,
,求
次多项式
满足
将上面的线性方程组写为矩阵形式,其中
为
阶Vandermonde矩阵。内插问题就是要解出系数向量
。如果
个参数
彼此相异,推知
,
是可逆的,方程式必定存在唯一解。
通常我们不直接解出,而是将多项式
表示为特殊Lagrange内插多项式,如下:
。
每个多项式都是
次,若
,
,但
。利用上述条件,可得Lagrange内插公式
。
显然,次多项式
满足前面给定的
个内插条件,
,
。