股票融资融券交易中关键指标

以下是股票融资融券交易中关键指标的详细解释,帮助你理解它们的含义和作用:


1. 融资余额

  • 定义:截至当日收盘后,投资者尚未偿还的融资总金额(即向券商借钱买股后未还的部分)。

  • 计算公式
    融资余额 = 前日融资余额 + 当日融资买入额 - 当日融资偿还额

  • 意义

    • 反映市场杠杆资金看多情绪:融资余额增加,说明投资者借钱买入股票增多,市场看涨情绪强。

    • 风险提示:融资余额过高可能意味着市场过热,需警惕回调风险。


2. 融资买入额

  • 定义:当日投资者通过融资(借钱)买入股票的总金额。

  • 意义

    • 短期看多信号:融资买入额骤增,表明资金短期内积极做多。

    • 示例:若某股融资买入额突然放大,可能有利好消息或资金炒作。


3. 融资偿还额

  • 定义:当日投资者偿还融资负债的总金额(即还钱给券商)。

  • 意义

    • 杠杆资金退出信号:融资偿还额增加,说明投资者在主动降杠杆,可能看跌或获利了结。

    • 风险提示:融资偿还额持续高于融资买入额时,需警惕资金撤离。


4. 融券余量

  • 定义:截至当日收盘后,投资者尚未偿还的融券数量(即借券卖出后未买回还券的股票数量)。

  • 计算公式
    融券余量 = 前日融券余量 + 当日融券卖出量 - 当日融券偿还量

  • 意义

    • 反映市场做空力量:融券余量增加,说明空方势力增强,市场看跌情绪浓。

    • 与股价关系:融券余量高位可能预示股价承压(但需结合其他指标判断)。


5. 融券卖出量

  • 定义:当日投资者通过融券(借券卖出)做空股票的总数量(单位:股)。

  • 意义

    • 空方主动出击:融券卖出量激增,表明资金短期内集中做空。

    • 示例:若某股融券卖出量突然放大,可能有利空预期或机构对冲风险。


6. 融券偿还量

  • 定义:当日投资者买回股票并归还给券商的数量(即平仓空头头寸)。

  • 意义

    • 空头回补信号:融券偿还量增加,说明空方在回补仓位,可能看跌情绪减弱。

    • 逼空行情:若股价上涨导致空头被迫平仓(偿还融券),可能加速股价上涨。


关键关系总结

指标多空方向行为逻辑市场信号
融资余额↑多头杠杆资金持续流入看涨
融资买入额↑多头资金主动借钱买入短期做多
融资偿还额↑多头退出杠杆资金还款离场获利了结或看跌
融券余量↑空头未平仓空单增加看跌
融券卖出量↑空头资金主动借券卖出短期做空
融券偿还量↑空头退出空头平仓(买回股票还券)空头撤退或逼空

实际应用场景

  1. 多头强势信号

    • 融资余额 + 融资买入额同步上升,融券余量下降 → 市场一致看多。

  2. 空头主导信号

    • 融券余量 + 融券卖出量激增,融资偿还额增加 → 市场看空情绪浓厚。

  3. 分歧与反转

    • 融资余额高但股价滞涨,可能预示杠杆资金无力推高股价,警惕回调。

    • 融券余量高位但股价不跌,可能引发空头回补(逼空行情)。


注意事项

  • 数据需结合股价走势:单纯看融资融券数据可能片面,需结合K线、成交量等分析。

  • 交易所差异:沪市(SSE)和深市(SZSE)数据需分开获取(AKShare主要提供沪市数据)。

  • T+1延迟:融资融券数据通常次日公布,实时性稍弱。

根据两融数据参考的python 选股:

import akshare as ak
import pandas as pd


# 设置Pandas显示选项
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)


# ---------------------- 筛选看涨股票 ----------------------
def filter_bullish_stocks():
    """筛选融资融券数据中看涨的股票"""
    # 1. 获取最近的交易日
    trade_date = "20250331"
    print(f"使用的交易日期: {trade_date}")

    # 2. 获取沪市两融数据
    margin_data = ak.stock_margin_detail_sse(date=trade_date)

    # 3. 数据清洗和计算
    margin_data["融资余额"] = pd.to_numeric(margin_data["融资余额"], errors="coerce")
    margin_data["融资买入额"] = pd.to_numeric(margin_data["融资买入额"], errors="coerce")
    margin_data["融券余量"] = pd.to_numeric(margin_data["融券余量"], errors="coerce")
    margin_data["融资买入占比"] = margin_data["融资买入额"] / margin_data["融资余额"]

    # filtered_stocks2 = margin_data[
    #     (margin_data["标的证券代码"] == "600571")   # 融券余量 < 10万股
    #     ].sort_values("融资买入额", ascending=False)

    # 4. 筛选条件
    filtered_stocks = margin_data[
        (margin_data["融资余额"] > 5e8) &  # 融资余额 > 5亿
        (margin_data["融资买入占比"] > 0.2) &  # 融资买入占比 > 20%
        (margin_data["融券余量"] < 1e5)  # 融券余量 < 10万股
        ].sort_values("融资买入额", ascending=False)

    # 5. 输出结果
    print(f"\n符合看涨做多条件的股票(共 {len(filtered_stocks)} 只):")
    print(filtered_stocks[["标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资买入占比", "融券余量"]].to_string())

    # print(filtered_stocks2[["标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资买入占比", "融券余量"]].to_string())

    # 6. 保存到CSV
    filtered_stocks.to_csv(f"看涨标的_{trade_date}.csv", index=False, encoding="utf_8_sig")
    return filtered_stocks


# ---------------------- 执行主函数 ----------------------
if __name__ == "__main__":
    bullish_stocks = filter_bullish_stocks()

 结果输出:

符合看涨做多条件的股票(共 6 只):
      标的证券代码 标的证券简称        融资余额      融资买入额    融资买入占比   融券余量
30    511380  转债ETF  1010956525  705064895  0.697424      0
74    513090   香港证券  1115655949  437192120  0.391870      0
1240  603893    瑞芯微  1931683455  420754156  0.217817  79600
75    513100  纳指ETF  1361995441  287966732  0.211430      0
1473  688220   翱捷科技   593232208  261210551  0.440318  93596
690   600789   鲁抗医药   676826524  163306570  0.241283  25600

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值