以下是股票融资融券交易中关键指标的详细解释,帮助你理解它们的含义和作用:
1. 融资余额
-
定义:截至当日收盘后,投资者尚未偿还的融资总金额(即向券商借钱买股后未还的部分)。
-
计算公式:
融资余额 = 前日融资余额 + 当日融资买入额 - 当日融资偿还额
-
意义:
-
反映市场杠杆资金看多情绪:融资余额增加,说明投资者借钱买入股票增多,市场看涨情绪强。
-
风险提示:融资余额过高可能意味着市场过热,需警惕回调风险。
-
2. 融资买入额
-
定义:当日投资者通过融资(借钱)买入股票的总金额。
-
意义:
-
短期看多信号:融资买入额骤增,表明资金短期内积极做多。
-
示例:若某股融资买入额突然放大,可能有利好消息或资金炒作。
-
3. 融资偿还额
-
定义:当日投资者偿还融资负债的总金额(即还钱给券商)。
-
意义:
-
杠杆资金退出信号:融资偿还额增加,说明投资者在主动降杠杆,可能看跌或获利了结。
-
风险提示:融资偿还额持续高于融资买入额时,需警惕资金撤离。
-
4. 融券余量
-
定义:截至当日收盘后,投资者尚未偿还的融券数量(即借券卖出后未买回还券的股票数量)。
-
计算公式:
融券余量 = 前日融券余量 + 当日融券卖出量 - 当日融券偿还量
-
意义:
-
反映市场做空力量:融券余量增加,说明空方势力增强,市场看跌情绪浓。
-
与股价关系:融券余量高位可能预示股价承压(但需结合其他指标判断)。
-
5. 融券卖出量
-
定义:当日投资者通过融券(借券卖出)做空股票的总数量(单位:股)。
-
意义:
-
空方主动出击:融券卖出量激增,表明资金短期内集中做空。
-
示例:若某股融券卖出量突然放大,可能有利空预期或机构对冲风险。
-
6. 融券偿还量
-
定义:当日投资者买回股票并归还给券商的数量(即平仓空头头寸)。
-
意义:
-
空头回补信号:融券偿还量增加,说明空方在回补仓位,可能看跌情绪减弱。
-
逼空行情:若股价上涨导致空头被迫平仓(偿还融券),可能加速股价上涨。
-
关键关系总结
指标 | 多空方向 | 行为逻辑 | 市场信号 |
---|---|---|---|
融资余额↑ | 多头 | 杠杆资金持续流入 | 看涨 |
融资买入额↑ | 多头 | 资金主动借钱买入 | 短期做多 |
融资偿还额↑ | 多头退出 | 杠杆资金还款离场 | 获利了结或看跌 |
融券余量↑ | 空头 | 未平仓空单增加 | 看跌 |
融券卖出量↑ | 空头 | 资金主动借券卖出 | 短期做空 |
融券偿还量↑ | 空头退出 | 空头平仓(买回股票还券) | 空头撤退或逼空 |
实际应用场景
-
多头强势信号:
-
融资余额 + 融资买入额同步上升,融券余量下降 → 市场一致看多。
-
-
空头主导信号:
-
融券余量 + 融券卖出量激增,融资偿还额增加 → 市场看空情绪浓厚。
-
-
分歧与反转:
-
融资余额高但股价滞涨,可能预示杠杆资金无力推高股价,警惕回调。
-
融券余量高位但股价不跌,可能引发空头回补(逼空行情)。
-
注意事项
-
数据需结合股价走势:单纯看融资融券数据可能片面,需结合K线、成交量等分析。
-
交易所差异:沪市(SSE)和深市(SZSE)数据需分开获取(AKShare主要提供沪市数据)。
-
T+1延迟:融资融券数据通常次日公布,实时性稍弱。
根据两融数据参考的python 选股:
import akshare as ak
import pandas as pd
# 设置Pandas显示选项
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
# ---------------------- 筛选看涨股票 ----------------------
def filter_bullish_stocks():
"""筛选融资融券数据中看涨的股票"""
# 1. 获取最近的交易日
trade_date = "20250331"
print(f"使用的交易日期: {trade_date}")
# 2. 获取沪市两融数据
margin_data = ak.stock_margin_detail_sse(date=trade_date)
# 3. 数据清洗和计算
margin_data["融资余额"] = pd.to_numeric(margin_data["融资余额"], errors="coerce")
margin_data["融资买入额"] = pd.to_numeric(margin_data["融资买入额"], errors="coerce")
margin_data["融券余量"] = pd.to_numeric(margin_data["融券余量"], errors="coerce")
margin_data["融资买入占比"] = margin_data["融资买入额"] / margin_data["融资余额"]
# filtered_stocks2 = margin_data[
# (margin_data["标的证券代码"] == "600571") # 融券余量 < 10万股
# ].sort_values("融资买入额", ascending=False)
# 4. 筛选条件
filtered_stocks = margin_data[
(margin_data["融资余额"] > 5e8) & # 融资余额 > 5亿
(margin_data["融资买入占比"] > 0.2) & # 融资买入占比 > 20%
(margin_data["融券余量"] < 1e5) # 融券余量 < 10万股
].sort_values("融资买入额", ascending=False)
# 5. 输出结果
print(f"\n符合看涨做多条件的股票(共 {len(filtered_stocks)} 只):")
print(filtered_stocks[["标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资买入占比", "融券余量"]].to_string())
# print(filtered_stocks2[["标的证券代码", "标的证券简称", "融资余额", "融资买入额", "融资买入占比", "融券余量"]].to_string())
# 6. 保存到CSV
filtered_stocks.to_csv(f"看涨标的_{trade_date}.csv", index=False, encoding="utf_8_sig")
return filtered_stocks
# ---------------------- 执行主函数 ----------------------
if __name__ == "__main__":
bullish_stocks = filter_bullish_stocks()
结果输出:
符合看涨做多条件的股票(共 6 只):
标的证券代码 标的证券简称 融资余额 融资买入额 融资买入占比 融券余量
30 511380 转债ETF 1010956525 705064895 0.697424 0
74 513090 香港证券 1115655949 437192120 0.391870 0
1240 603893 瑞芯微 1931683455 420754156 0.217817 79600
75 513100 纳指ETF 1361995441 287966732 0.211430 0
1473 688220 翱捷科技 593232208 261210551 0.440318 93596
690 600789 鲁抗医药 676826524 163306570 0.241283 25600