贾斯汀玛尔斯
点赞、收藏加关注,追fun不迷路
展开
-
深度学习和机器学习的区别
机器学习和深度学习各有优势和适用场景。机器学习更适合处理结构化数据,计算资源需求较低,且具备良好的可解释性。而深度学习在大规模非结构化数据处理方面表现突出,适合复杂任务,但需要更多的计算资源和数据支持。原创 2024-09-13 13:51:59 · 414 阅读 · 0 评论 -
如何判断机器学习模型的好坏之正则化
L1、L2正则化和弹性网络各有其适用的场景和优缺点,选择时需要结合数据特征和实际需求进行权衡。通过合理使用正则化技术,可以有效提高模型的泛化能力,避免过拟合。原创 2024-08-05 14:30:17 · 336 阅读 · 0 评论 -
如何判断机器学习模型的好坏之LIME和SHAP
LIME(Local Interpretable Model-agnostic Explanations)和SHAP(SHapley Additive exPlanations)是两种广泛使用的模型可解释性技术,旨在帮助理解复杂机器学习模型的决策过程。原创 2024-08-05 14:24:27 · 144 阅读 · 0 评论 -
如何判断机器学习模型的好坏之留出法
留出法(Holdout Method)是一种简单且常用的模型评估方法,通过将数据集随机划分为两个互斥的子集——训练集和测试集,分别用于模型训练和性能评估。留出法的基本思想是用训练集来拟合模型,用测试集来评估模型的泛化能力。原创 2024-08-05 14:24:14 · 62 阅读 · 0 评论 -
如何判断机器学习模型的好坏之交叉验证
交叉验证(Cross-Validation)是一种评估模型性能的统计方法,尤其适用于样本量较小或数据集不均衡的情况。通过交叉验证,可以有效地利用所有数据,避免过拟合或欠拟合。原创 2024-08-05 14:24:05 · 81 阅读 · 0 评论 -
如何判断机器学习模型的好坏之回归模型
将数据集分为多个子集,轮流使用每个子集作为验证集,其余子集作为训练集,以评估模型的性能。均方误差是预测值与实际值之间差值的平方和的平均数,用于衡量模型预测的平均误差。平均绝对百分比误差是预测值与实际值之间差值的绝对值占实际值的比例的平均数。将数据集随机分为训练集和测试集,使用训练集训练模型,使用测试集评估模型性能。残差是实际值与预测值之间的差值,通过分析残差的分布,可以诊断模型的拟合情况。均方根误差是均方误差的平方根,保持了与原始数据相同的单位。平均绝对误差是预测值与实际值之间差值的绝对值的平均数。原创 2024-08-05 14:23:57 · 67 阅读 · 0 评论 -
如何判断机器学习模型的好坏之分类模型
判断机器学习模型的好坏通常通过多种指标和方法,这些方法可以分为模型性能评估、模型稳定性和模型可解释性等方面。原创 2024-08-05 14:23:50 · 67 阅读 · 0 评论 -
深度学习之DeepMind的MuZero
MuZero是DeepMind开发的一个强化学习算法。它的创新之处在于能够在没有明确模型的情况下进行有效的学习和决策。与传统的强化学习方法不同,MuZero不依赖于环境的真实动态模型,而是通过一个内部模型来预测未来的状态和奖励,从而在没有外部环境信息的情况下进行学习。原创 2024-07-23 15:02:31 · 142 阅读 · 0 评论 -
深度学习之DeepMind的AlphaZero
AlphaZero是DeepMind开发的一个人工智能程序,它在围棋、国际象棋和将棋(日本象棋)等棋类游戏中取得了显著的成功。与之前的棋类人工智能不同,AlphaZero并不依赖于传统的棋局数据库或手工设计的特征。相反,它通过自我对弈的方式进行学习,并使用深度神经网络来评估棋局和选择最佳的走法。原创 2024-07-23 14:45:26 · 232 阅读 · 0 评论 -
机器学习之对比学习MoCo
MoCo(Momentum Contrast)是由Facebook AI Research提出的一种对比学习方法,用于无监督的视觉表示学习。MoCo通过使用动量更新机制和一个队列存储负样本,使得可以在小批次训练中实现高效的对比学习。原创 2024-07-16 14:05:09 · 230 阅读 · 0 评论 -
机器学习之自监督学习之对比学习SimCLR(附代码示例)
SimCLR(Simple Framework for Contrastive Learning of Visual Representations)是由Google提出的一种对比学习SimCLR是一种有效的自监督对比学习方法,通过对比学习和数据增强技术,能够在没有标签数据的情况下学到高质量的特征表示,广泛应用于图像分类、目标检测、图像分割等任务中。它的优势在于无需标注数据、强大的特征表示能力和简洁的架构,但也有一些局限性,如对大批次的依赖。在实际应用中,SimCLR可以与其他方法结合使用,进一步提升性能。原创 2024-07-16 13:55:16 · 302 阅读 · 0 评论 -
深度学习之轻量化神经网络MobileNet
轻量化神经网络MobileNet是一种专为移动和嵌入式设备设计的高效卷积神经网络模型。它通过引入深度可分离卷积(Depthwise Separable Convolutions)技术,大大减少了模型参数和计算量,同时保持了较高的准确性。原创 2024-07-12 14:13:15 · 389 阅读 · 0 评论 -
深度学习之轻量化神经网络 EfficientNet
EfficientNet 是由谷歌研究团队开发的一种新型卷积神经网络(Convolutional Neural Network, CNN)架构,旨在通过系统性地缩放模型来提升性能与效率。它的主要特点和贡献在于提出了一种新的缩放方法,称为复合缩放(Compound Scaling),它同时考虑了网络的深度、宽度和分辨率。原创 2024-07-12 14:08:06 · 790 阅读 · 0 评论 -
深度学习之图神经网络GraphSAGE
GraphSAGE(Graph Sample and Aggregate)是一种用于图神经网络(Graph Neural Networks, GNNs)的算法,由斯坦福大学的研究人员于2017年提出。它旨在解决图数据(如社交网络、推荐系统等)上的节点表示学习问题,能够有效地捕获节点的局部邻域信息并生成节点的低维向量表示。原创 2024-07-02 09:22:54 · 133 阅读 · 0 评论 -
深度学习之生成对抗网络 BigGAN
BigGAN(Big Generative Adversarial Networks)是生成对抗网络(GAN)的一种扩展版本,由 DeepMind 的研究人员于 2018 年提出。BigGAN 在图像生成领域取得了显著的突破,能够生成高质量、大尺寸的图像。原创 2024-07-01 16:03:13 · 237 阅读 · 0 评论 -
深度学习之Transformer模型的Vision Transformer(ViT)和Swin Transformer
Transformer 模型最初由 Vaswani 等人在 2017 年提出,是一种基于自注意力机制的深度学习模型。它在自然语言处理(NLP)领域取得了巨大成功,并且也逐渐被应用到计算机视觉任务中。以下是两种在计算机视觉领域中非常重要的 Transformer 模型:Vision Transformer(ViT)和 Swin Transformer。原创 2024-06-28 15:54:00 · 265 阅读 · 0 评论 -
机器学习之元学习Reptile
元学习(Meta-learning)是机器学习的一个领域,旨在通过学习如何学习来提高算法在新任务上的表现。Reptile 是一种简单有效的元学习算法,由 OpenAI 提出。Reptile 算法的目标是通过优化模型参数,使其在尽可能少的训练步骤后就能很好地适应新任务。原创 2024-06-28 15:48:29 · 223 阅读 · 0 评论 -
深度学习之生成对抗网络StyleGAN3
StyleGAN3 是一种先进的生成对抗网络,通过引入抗混叠设计和一致性增强技术,显著提高了生成图像的质量和一致性。上述代码示例展示了 StyleGAN3 的基本实现和训练过程,适用于图像生成任务。通过不断优化生成器和判别器,StyleGAN3 能够生成高质量的逼真图像。原创 2024-06-27 15:43:53 · 900 阅读 · 0 评论 -
深度强化学习之SAC(Soft Actor-Critic)
AC通过引入策略熵来鼓励探索,同时采用双Q网络减少估计偏差,具有较好的稳定性和性能。上述代码示例展示了SAC的基本实现和训练过程,适用于连续动作空间的强化学习任务。原创 2024-06-27 14:43:50 · 649 阅读 · 0 评论 -
机器学习之多模态学习FLAVA(Foundational Language and Vision Alignment)
FLAVA(A Foundational Language and Vision Alignment Model)是一种多模态学习模型,旨在处理图像和文本的联合表示学习。FLAVA模型由Meta AI(Facebook AI Research)提出,能够在多个任务上执行,包括图像-文本匹配、图像分类、文本分类和多模态任务(如视觉问答)。原创 2024-06-25 14:36:18 · 242 阅读 · 0 评论 -
机器学习之对比学习方法SimSiam(Simple Siamese)
SimSiam(Simple Siamese Representation Learning)是一种自监督学习方法,由Facebook AI Research提出。SimSiam通过简化对比学习的设计,不需要负样本对、复杂的内存队列或特殊的数据增强方法,取得了在自监督学习任务上的优异表现。原创 2024-06-25 14:29:13 · 280 阅读 · 0 评论 -
深度学习之强化学习PPO(Proximal Policy Optimization,近端策略优化)
深度学习中的PPO(Proximal Policy Optimization,近端策略优化)是一种强化学习算法。PPO是由OpenAI提出的,它在解决许多复杂任务(如游戏AI和机器人控制)方面取得了很好的效果。原创 2024-06-25 13:55:31 · 654 阅读 · 0 评论 -
机器学习之子监督学习方法BYOL(Bootstrap Your Own Latent)
BYOL(Bootstrap Your Own Latent)是一种自监督学习方法,由DeepMind于2020年提出。它是一种通过自我引导来学习特征表示的算法,不需要对比学习(contrastive learning)中的负样本对,而是通过自身的表示进行学习。原创 2024-06-25 13:54:13 · 211 阅读 · 0 评论 -
深度学习之近端策略优化(Proximal Policy Optimization,PPO)
深度学习中的PPO(Proximal Policy Optimization,近端策略优化)是一种强化学习算法。PPO是由OpenAI提出的,它在解决许多复杂任务(如游戏AI和机器人控制)方面取得了很好的效果。原创 2024-06-25 13:42:14 · 332 阅读 · 0 评论 -
深度学习之条件生成对抗网络(Conditional GANs, cGANs)
在传统的GANs中,生成器从潜在空间中学习到一个映射,直接生成接近真实数据分布的样本。而在cGANs中,生成器和判别器除了输入潜在变量(通常是一个随机向量),还接收额外的条件信息。这些条件信息可以是类别标签、文本描述或其他形式的属性,用于指导生成器生成具有特定属性的数据。原创 2024-06-14 10:30:15 · 595 阅读 · 0 评论 -
机器学习之Transformer模型和大型语言模型(LLMs)
Transformer模型和大型语言模型(LLMs)是现代自然语言处理(NLP)和人工智能(AI)领域的前沿技术。这些模型革新了机器理解和生成人类语言的方式,使得从聊天机器人和自动翻译到复杂的内容生成和情感分析的应用成为可能。原创 2024-06-14 10:10:18 · 448 阅读 · 1 评论 -
机器学习之爬山算法(Hill Climbing Algorithm)
爬山算法属于局部搜索算法,因为它只能找到最优解的局部近似,而不能保证找到全局最优解。然而,它也容易陷入局部最优解,尤其是在搜索空间复杂或具有许多局部最优解的情况下。它的基本思想类似于登山过程中爬升到山顶的过程,即从一个起始点开始,不断尝试向邻近的点移动,直到找到一个局部最优解。这通常意味着选择具有更小目标函数值的邻近解,如果目标是最大化目标函数,则选择具有更大目标函数值的邻近解。:在当前解的邻近空间中生成相邻的解,这些相邻解与当前解只有一个或少量的参数值不同。:选择一个初始解作为搜索的起点。原创 2024-05-28 10:06:17 · 278 阅读 · 0 评论 -
spark机器学习之协同过滤
协同过滤是一类基于用户行为数据的推荐算法,它的核心思想是利用用户的历史行为数据(比如评分、购买、点击等)来发现用户之间的相似性或者物品之间的相似性,从而给用户推荐他们可能感兴趣的物品。协同过滤算法通常分为两种类型:基于用户的协同过滤和基于物品的协同过滤。协同过滤算法的优点是不需要关于用户或物品的额外信息,只需要用户的历史行为数据即可。但是,协同过滤算法也存在一些问题,比如冷启动问题(对于新用户或新物品无法进行有效的推荐)、稀疏性问题(用户对物品的行为数据往往是稀疏的)等。:选择适当的模型来进行协同过滤。原创 2024-05-28 10:02:39 · 102 阅读 · 0 评论 -
机器学习中的距离公式
以下是各种常见的距离度量方法的概述:欧式距离、曼哈顿距离、切比雪夫距离和闵可夫斯基距离是用于数值型数据的基本度量方法。马哈拉诺比斯距离考虑数据的协方差,用于多变量数据。余弦距离适用于高维和稀疏数据,如文本数据。汉明距离用于计算字符串或二进制向量中的不同字符数。杰卡德距离衡量两个集合之间的不相似性,而布雷-柯蒂斯距离和Canberra距离用于生态学和环境科学。洛伦兹距离减少异常值的影响,动态时间规整(DTW)用于时间序列分析。Hausdorff距离用于形状和图像分析,地理距离考虑球面上的最短路径,Pear原创 2024-05-28 09:40:39 · 780 阅读 · 0 评论 -
机器学习之直推式迁移学习(Transductive Transfer Learning)
直推式迁移学习(Transductive Transfer Learning)是一种特殊的迁移学习方法,它主要关注的是在特定的目标任务上的表现,通过利用源任务的知识来提高目标任务的性能。与传统的迁移学习不同,直推式迁移学习假设目标任务的测试数据在训练过程中是可用的,并利用这些数据来改进模型的泛化能力。原创 2024-05-24 10:29:47 · 188 阅读 · 0 评论 -
机器学习之一分类支持向量机(One-class SVM)
一分类支持向量机(One-class SVM)是一种用于异常检测(outlier detection)和新颖性检测(novelty detection)的无监督学习算法。与传统的SVM不同,一分类SVM仅使用一种类别的数据进行训练,目的是在高维空间中找到一个最大边界超平面,将大部分数据点包含在超平面的一侧,从而识别出离群点或异常点。原创 2024-05-24 10:14:14 · 251 阅读 · 0 评论 -
机器学习之快速森林分位数回归(Fast Forest Quantile Regression)
快速森林分位数回归(Fast Forest Quantile Regression)是一种用于回归任务的机器学习方法,旨在预测目标变量的特定分位数值。与传统回归模型不同,分位数回归能够提供目标变量的不同分布信息,而不仅仅是均值预测。这在需要估计不确定性范围或分布特征的应用中非常有用。原创 2024-05-23 10:20:22 · 327 阅读 · 0 评论 -
机器学习之二分类决策丛林(Two-class Decision Jungle)
二分类决策丛林(Two-class Decision Jungle)是一种集成学习方法,结合了决策树和随机森林的优点,并引入了图模型的概念。决策丛林旨在通过构建多个决策树并将它们的结构图合并为一个“丛林”图来提高分类性能。下面详细介绍二分类决策丛林的核心概念、工作原理、优点和缺点,以及应用实例。原创 2024-05-23 10:09:48 · 838 阅读 · 1 评论 -
机器学习之二分类提升决策树(Two-class Boosted Decision Tree)
二分类提升决策树(Two-class Boosted Decision Tree)是一种常用的机器学习方法,主要用于分类任务。该方法结合了决策树模型和提升(boosting)算法的优点,通过多个弱分类器(通常是简单的决策树)来构建一个强分类器。原创 2024-05-23 10:05:04 · 442 阅读 · 1 评论 -
机器学习之交叉注意力
交叉注意力(Cross-Attention)是一种注意力机制,用于处理两个不同序列之间的依赖关系。相比于自注意力(Self-Attention),交叉注意力在多模态任务(如图像和文本匹配)或序列到序列任务(如机器翻译)中应用广泛。下面是交叉注意力机制的详细介绍和一个实现示例。原创 2024-05-20 15:42:58 · 689 阅读 · 0 评论 -
机器学习之注意力机制
注意力机制(Attention Mechanism)是机器学习,特别是深度学习中一种重要的技术,最初被用于自然语言处理(NLP)任务,如机器翻译。它的核心思想是,让模型在处理输入数据时,能够“关注”到数据中的重要部分,而不是一视同仁地处理所有部分。在序列到序列(seq2seq)模型中,传统的编码器-解码器架构往往会遇到问题,尤其是当输入序列很长时。具体来说,解码器在生成每个输出时,不是依赖于一个固定的上下文向量,而是根据当前的解码状态,动态地计算与输入序列不同部分的加权和。原创 2024-05-20 15:40:05 · 270 阅读 · 0 评论 -
深度学习之深度信念网络(Deep Belief Machines)
DBNs是一种堆叠了多个RBM的深度生成模型。每一层RBM的隐藏层作为下一层RBM的可见层。通过逐层训练,DBNs能够逐渐提取出数据的高级特征。原创 2024-05-17 11:11:10 · 165 阅读 · 0 评论 -
机器学习之基于图形的方法(Graph-based Methods) 半监督学习
在基于图形的方法中,数据点被看作图中的节点,节点之间的边表示数据点之间的关系。通过图的结构,可以利用标记数据和未标记数据的整体信息来提升模型的性能。原创 2024-05-17 10:59:50 · 172 阅读 · 0 评论 -
机器学习之低密度分离(Low-density Separation)
LOF算法通过计算每个数据点周围的局部密度与其邻居数据点的密度之比,来评估数据点的异常程度。局部密度可以使用这些邻居的距离来衡量,常用的方法包括计算 (k) 个最近邻的平均距离的倒数作为密度的估计。如果 LOF 较大的数据点被视为异常点,则可以尝试在数据空间中绘制异常点和正常点的分布情况,以便进一步分析和处理。这里的“低密度”指的是数据分布中相对稀疏的区域,即与其他类别的数据点相比较为孤立的区域。通常,密度较高的区域可以被视为同一类别的数据点,而密度较低的区域则可能是不同类别之间的边界。原创 2024-05-06 17:36:15 · 304 阅读 · 0 评论 -
机器学习之K-medians聚类
K-medians聚类是一种聚类算法,类似于K-means,但是它使用中位数来确定簇的中心,而不是平均值。这种方法在处理数据中存在离群值或异常值时比较有用,因为中位数对离群值不敏感。K-medians的步骤与K-means类似,但在每次迭代中,它使用中位数来更新簇的中心。下面是一个简单的Python示例,演示如何使用K-medians算法进行数据聚类。K-medians聚类是K-means的一种变体,适用于那些可能包含离群值或形状复杂的数据集。原创 2024-04-28 15:36:27 · 689 阅读 · 0 评论