机器学习
文章平均质量分 61
u011106229
这个作者很懒,什么都没留下…
展开
-
机器学习->统计学基础->贝叶斯估计,最大似然估计(MLE),最大后验估计(MAP)
转载:http://blog.csdn.net/Mr_tyting/article/details/62882162?locationNum=6&fps=1在学习机器学习,推荐系统等上的众多算法思想时,以及在数学公式推到上面,避免不了许多统计学方面的知识,其中以贝叶斯,最大似然估计,最大后验估计为最常遇见,必须深刻掌握了解。本篇博文将以以下几个主题来讨论,总结。频率派与贝叶转载 2017-09-07 10:41:24 · 1119 阅读 · 0 评论 -
矩阵、向量求导法则
转载:http://www.cnblogs.com/huashiyiqike/p/3568922.html矩阵、向量求导法则复杂矩阵问题求导方法:可以从小到大,从scalar到vector再到matrix。 x is a column vector, A is a matrixd(A∗x)/dx=A d(xT∗A)/dxT=A转载 2017-09-07 20:50:24 · 308 阅读 · 0 评论 -
Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归
转载:网址Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)”+17 投票斯坦福大学机器学习第六课"逻辑回归“学习笔记,本次课程主要包括7部分:1) Classification(分类)2) Hypothesis Representation3) Decision b转载 2017-09-07 23:57:36 · 280 阅读 · 0 评论 -
常见面试之机器学习算法思想简单梳理
转载:http://blog.csdn.net/overstack/article/details/15299171前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重转载 2017-09-08 08:34:24 · 473 阅读 · 0 评论 -
简易解说拉格朗日对偶(Lagrange duality)
请尊重原创知识,本人非常愿意与大家分享 转载请注明出处:http://www.cnblogs.com/90zeng/ 作者:博客园-太白路上的小混混引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约转载 2017-09-10 10:53:27 · 282 阅读 · 0 评论 -
最优间隔分类、原始/对偶问题、SVM对偶—斯坦福ML公开课笔记7
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9774135本篇笔记针对ML公开课的第七个视频,主要内容包括最优间隔分类器(Optimal Margin Classifier)、原始/对偶问题(Primal/Dual Problem)、svm的对偶问题,都是svm(support vector machine,支持向量机转载 2017-09-10 16:43:21 · 238 阅读 · 0 评论