题目描述
在二维平面上,有一机器人从原点(0,0)开始。给出它的移动顺序,判断这个机器人在完成移动后是否在(0,0)处结束。
移动顺序由字符串表示。字符move[i]
表示其第i
次移动。机器人的有效动作有R
(右),L
(左),U
(上)和D
(下)。如果机器人在完成所有动作后返回原点,则返回true
。否则,返回false
。
注意: 机器人“面朝”的方向无关紧要。"R"
将始终使机器人向右移动一次,"L"
将始终使机器人向左移动等。此外,假设每次移动机器人的移动幅度相同。
示例1:
输入: “UD”
输出: true
解释: 机器人向上移动一次,然后向下移动一次。所有动作都具有相同的幅度,因此它最终回到它开始的原点。因此,我们返回true。
示例2:
输入: “LL”
输出: false
解释: 机器人向左移动两次。他最终位于原点的左侧,距原点有两次的“移动”距离。我们返回false,因为它在移动结束时没有返回原点。
思路分析
题目难度为简单 ,这里只需要计数输入字符串的对应字符的个数;这里在遍历之前,先判断字符串长度是否为偶数,若不是直接返回false
。这里直接给出代码:
解题代码
public static boolean solution(String track) {
if (track == null || track == "") {
return true;
}
int leftRight = 0, upDown = 0;
if(track.length() % 2 != 0) return false;
for(int i = 0; i < track.length(); i++){
char c = track.charAt(i);
if(c == 'R' || c == 'L'){
if(c == 'R') leftRight--;
else leftRight++;
}else if(c == 'U' || c == 'D'){
if(c == 'D') upDown--;
else upDown++;
}
}
return leftRight == upDown ? leftRight==0 : false;
}
复杂度分析
时间复杂度: 我们对字符串仅遍历了一次,故时间复杂度为O(n)
;
空间复杂度: 没有借助辅助容器,故空间复杂度为O(1)
;
Github源码
完整可运行文件请访问GitHub。