[译] Alamofire Tutorial: Getting Started

[译] Alamofire Tutorial: Getting Started

转载请注明出处:http://leejunhui.com/2017/01/23/Alamofire-Tutorial/

本文翻译自RaywenderlichAlamofire Tutorial: Getting Started

注:已更新到Alamofire 4, Xcode 8.2, iOS 10以及Swift 3.

Alamofire是一个为iOSmacOS打造的并基于Swift的网络库.它在Apple的基础网络架构上提供了更加优雅的接口来简化繁重而常用的网络请求任务。
Alamofire提供了链式的request/response方法,JSON的传参和响应序列化,身份认证和其他特性。在这篇Alamofire教程中,你将使用Alamofire来执行像从第三方提供的RESTfulapi接口上传文件,请求数据等基本网络操作。Alamofire的优雅之处在于它完完全全是由Swift写成的,并且没有从它的Objective-C版本-AFNetworking那继承任何特性。

你应该对于HTTP网络有一个概念性的理解,并且还应该接触过Apple的网络类比如URLSession.当然Alamofire中的一些细节会有点晦涩难懂,如果你有曾经解决过网络请求方面的经验也是极好的。你还需要使用CocoaPods来将Alamofire集成到项目中。

Getting Started

下载项目代码 摸我

下面介绍的项目名为PhotoTagger,当我们完成该项目后,可以实现:从相册中选择一张照片(如果你用的是真机测试的话,可以拍取一张照片),然后上传这张照片到一个第三方平台,平台会对该照片进行图像识别,然后返回一个tag的列表和这张图片的主色。

img

编译并运行该项目,你就可以看到如下界面:

img

点击Select Photo,然后选择一张照片,接着界面背景图就会变成你选择的那张照片。打开Main.stroyboard,显示tags和colors的界面已经为你准备好了。剩下的工作就是上传照片和获取tags以及colors了。

The Imagga API

Imagga是一个为开发者和企业提供构建可伸缩的,以图片为主的云产品的图像识别服务的网站。你可以先尝试下官方的自动标记服务demo:地址.

你需要再Imagga为本文的项目创建一个免费的开发者账号。因为Imagga对于每个HTTP请求都进行了权限认证,所以只有拥有该网站账号的用户才可以使用他们的服务。来到 https://imagga.com/auth/signup/hacker,然后注册。完成注册后,检查下是否如下图所示:
img

Authorization区域列出了一个等会你将用到的token。该token将会被包含在每个发往Imagga的请求的头部。

提示:请确认你拷贝了整个token字符串,确认滑动了最右边并检查是否拷贝完整。

稍后你将会用到Imagga的api来上传图片,taggingapi实现图像识别,colorsapi用来颜色识别。你可以在http://docs.imagga.com上查看所有的api。

Installing Dependencies 安装依赖

在项目主目录里创建Podfile文件,内容如下:

platform :ios, '10.0'

inhibit_all_warnings!
use_frameworks!

target 'PhotoTagger' do
  pod 'Alamofire', '~> 4.2.0'
end

然后打开终端,来到项目主目录下,执行pod install命令。如果你的Mac上没有安装过CocoaPods的话,可以查看How to Use CocoaPods with Swift教程。

确保你使用的是CocoaPods的最新版本,否则可能会在安装第三方库时报错。本文撰写时,最新版本为1.1.1。

关闭Xcode项目,然后打开新生成的PhotoTagger.xcworkspace文件。编译然后运行,跑起来的效果应该和之前保持一致。你下一步的任务是添加一些HTTP请求来从RESTful服务获取一些JSON数据。

REST, HTTP, JSON — 是什么呢?

如果你对使用HTTP不是特别有经验的话,那么你可能会很好奇这些缩写词到底是什么含义。
HTTP是一种应用层协议,或者可以理解为一套网站用来从web服务器传输数据到你的电脑屏幕上的规范。你应该看到了你在浏览器中所输入的每个URL前面都会有HTTPHTTPS作为前缀。你可能也听过其它的应用层协议,比如FTP,TelnetSSHHTTP定义了一些客户端(你的浏览器或者app)用来指明所需的行为,请求的方法或者说动作:
GET: 获取数据,比如一个WEB页面。但是不更改服务器上的任何内容。
HEAD: 与GET相同,但是服务器只会返回头部,并不会返回实际的数据。
POST: 发送数据到服务器,通常用于表单提交。
PUT: 发送数据到指定的路径。
DELETE: 删除指定路径的数据。

REST, 或者表征状态转移,是用来设计可持续的,易于使用的以及易于维护的WEB API的一套规范。REST有几个体系结构规则,用于强制执行某些操作,例如不在请求之间保持状态,使请求可缓存,并提供统一的接口。这样,像您这样的应用开发者就可以轻松地将API集成到您的应用中,而无需跟踪请求之间的数据状态。
JSON代表JavaScript Object Notation; 它提供了一个用于在两个系统之间用于传输数据的直接的,人类可读的和便携的机制。JSON的数据类型有:string,boolean,array,object / dictionary,null和number; 整数和小数之间没有区别。Apple提供JSONSerialization类来帮助将内存中的对象转换为JSON,反之亦然。

HTTPRESTJSON的组合构成了作为开发人员可用的Web服务的很好的一部分。试图理解每个细枝末节如何工作可能是令人难以应对的。 像Alamofire这样的库可以帮助减少使用这些服务的复杂性,并且在没有帮助的情况下让您的运行速度更快。

Alamofire适合做什么?

你为什么需要Alamofire?苹果已经提供了URLSession和其他类来通过HTTP获取内容,所以为什么要使用一个第三方库来增加复杂度呢?
简单的答案是Alamofire是基于URLSession开发而成的,但它可以让你免于编写样板代码,使编写网络代码更容易。你可以花费很少的精力就可以让从网络上获取数据的操作代码变得更加简洁和易于阅读。
Alamofire有几个主要功能:

  • .upload:以multipart,流,文件或数据方法上传文件。
  • .download:下载文件或恢复正在进行的下载。
  • .request:每个不与文件传输相关联的HTTP请求。

这些Alamofire函数作用于模块,而不是类或结构体。 Alamofire的基础部分是类和结构体,如SessionManagerDataRequestDataResponse; 但是,您不需要完全了解Alamofire的整个结构即可开始使用它。
下面是使用Apple的URLSession和Alamofire的请求函数进行相同网络操作的示例:

// With URLSession
public func fetchAllRooms(completion: @escaping ([RemoteRoom]?) -> Void) {
  let url = URL(string: "http://localhost:5984/rooms/_all_docs?include_docs=true")!

  var urlRequest = URLRequest(
    url: url,
    cachePolicy: .reloadIgnoringLocalAndRemoteCacheData,
    timeoutInterval: 10.0 * 1000)
  urlRequest.httpMethod = "GET"
  urlRequest.addValue("application/json", forHTTPHeaderField: "Accept")

  let task = urlSession.dataTask(with: urlRequest)
  { (data, response, error) -> Void in
    guard error == nil else {
      print("Error while fetching remote rooms: \(error)")
      completion(nil)
      return
    }

guard let data = data,
  let json = try? JSONSerialization.jsonObject(with: data) as? [String: Any] else {
    print("Nil data received from fetchAllRooms service")
    completion(nil)
    return
}

guard let rows = json["rows"] as? [[String: Any]] else {
  print("Malformed data received from fetchAllRooms service")
  completion(nil)
  return
}

let rooms = rows.flatMap({ (roomDict) -> RemoteRoom? in
  return RemoteRoom(jsonData: roomDict)
})

completion(rooms)
  }

  task.resume()
}

对比:

// With Alamofire
func fetchAllRooms(completion: @escaping ([RemoteRoom]?) -> Void) {
  Alamofire.request(
    URL(string: "http://localhost:5984/rooms/_all_docs")!,
    method: .get,
    parameters: ["include_docs": "true"])
  .validate()
  .responseJSON { (response) -> Void in
    guard response.result.isSuccess else {
      print("Error while fetching remote rooms: \(response.result.error)")
      completion(nil)
      return
    }

guard let value = response.result.value as? [String: Any],
  let rows = value["rows"] as? [[String: Any]] else {
    print("Malformed data received from fetchAllRooms service")
    completion(nil)
    return
}

let rooms = rows.flatMap({ (roomDict) -> RemoteRoom? in
  return RemoteRoom(jsonData: roomDict)
})

completion(rooms)
  }
}

你可以看到Alamofire所需要的设置更加简单,函数可读性也更高。你使用responseJSON(options:completionHandler:)来反序列化相应结果,然后调用validate()方法来简化错误处理。现在是时候来实践使用Alamofire了。

上传文件

打开ViewController.swift文件,然后在顶部添加以下代码:

import Alamofire

这使你可以在代码中使用Alamofire模块提供的功能,然后,在该文件中末尾处添加以下代码:

// Networking calls
extension ViewController {
  func upload(image: UIImage,
              progressCompletion: @escaping (_ percent: Float) -> Void,
              completion: @escaping (_ tags: [String], _ colors: [PhotoColor]) -> Void) {
    guard let imageData = UIImageJPEGRepresentation(image, 0.5) else {
      print("Could not get JPEG representation of UIImage")
      return
    }
  }
}

将图片上传到Imagga的第一步是将图片转换为适用于API的正确格式。上面的图片选择方法会返回一个转化成JPEG格式的图片实例。
然后,来到imagePickerController(_:didFinishPickingMediaWithInfo:)方法,然后在你设置imageView的后面添加以下代码:

// 1
takePictureButton.isHidden = true
progressView.progress = 0.0
progressView.isHidden = false
activityIndicatorView.startAnimating()

upload(
  image: image,
  progressCompletion: { [unowned self] percent in
    // 2
    self.progressView.setProgress(percent, animated: true)
  },
  completion: { [unowned self] tags, colors in
    // 3
    self.takePictureButton.isHidden = false
    self.progressView.isHidden = true
    self.activityIndicatorView.stopAnimating()

self.tags = tags
self.colors = colors

// 4
self.performSegue(withIdentifier: "ShowResults", sender: self)
})

Alamofire的一切行为都是异步的,这意味着你将以异步的方式更新UI。

1.隐藏上传按钮,并显示进度条和活动视图。
2.当文件上传时,你可以调用进度回调来获取实时的进度百分比,然后可以更新进度条上的进度。
3.当上传完成后将执行完成处理回调,控件的状态也将会恢复到初始状态。
4.最后,在一个成功或者失败的上传后进入结果界面,用户界面不会根据错误情况变化。

然后,我们回到upload(image:progressCompletion:completion:)方法,然后在转化UIImage实例代码后面添加如下代码:

Alamofire.upload(
  multipartFormData: { multipartFormData in
    multipartFormData.append(imageData,
                             withName: "imagefile",
                             fileName: "image.jpg",
                             mimeType: "image/jpeg")
  },
  to: "http://api.imagga.com/v1/content",
  headers: ["Authorization": "Basic xxx"],
  encodingCompletion: { encodingResult in
  }
)

请确保从Imagga网站上获取到你自己的Basic授权令牌,然后替换掉代码中Basic xxx的部分。这里你将JPEG数据转换为MIME multipart请求并发送到Imagga内容服务api。
下一步,添加如下代码:

switch encodingResult {
case .success(let upload, _, _):
  upload.uploadProgress { progress in
    progressCompletion(Float(progress.fractionCompleted))
  }
  upload.validate()
  upload.responseJSON { response in
  }
case .failure(let encodingError):
  print(encodingError)
}

这两段代码通过调用Alamofireupload方法,然后随着文件上传,通过一个简单的计算来更新进度条UI。之后验证响应的状态代码是否在默认可接受的范围内(在200和299之间)。

注意:在Alamofire 4之前,不能保证总是在主队列上调用进度回调。而从Alamofire 4开始,新的进度回调API则总是在主队列上调用。

接下来,在upload.responseJSON中添加以下代码:

// 1.
guard response.result.isSuccess else {
  print("Error while uploading file: \(response.result.error)")
  completion([String](), [PhotoColor]())
  return
}

// 2.
guard let responseJSON = response.result.value as? [String: Any],
  let uploadedFiles = responseJSON["uploaded"] as? [[String: Any]],
  let firstFile = uploadedFiles.first,
  let firstFileID = firstFile["id"] as? String else {
    print("Invalid information received from service")
    completion([String](), [PhotoColor]())
    return
}

print("Content uploaded with ID: \(firstFileID)")

// 3.
completion([String](), [PhotoColor]())

下面是上面代码每个步骤的解释:
1.检查响应是否成功,如果失败,打印错误并调用完成回调函数。
2.检查响应的每个部分,并验证预期的类型是否就是接收到的实际类型,然后从响应中检索firstFileID,如果firstFileID无法解析,则输出错误信息并调用完成回调函数。
3.调用完成回调函数来更新UI。此时,你并没有下载到任何标签和颜色数据,所以只需要传入空数据即可。

注意:每个响应都有一个带有值和类型的Result枚举。 使用自动验证,当结果返回200到299之间的有效HTTP代码并且内容类型是在Accept HTTP header字段中指定的有效类型时,将认为结果成功。
你可以通过如下所示的添加.validate参数来使用手动验证响应结果:

   Alamofire.request("https://httpbin.org/get", parameters: ["foo": "bar"])
  .validate(statusCode: 200..<300)
  .validate(contentType: ["application/json"])
  .response { response in
  // response handling code
}

如果你在上传中发生错误的话,UI界面是不会提示错误信息的,它仅仅告诉用户没有颜色和标签返回。这不是最好的用户体验,但是对于这篇教程来说已经足够了。
编译并运行整个项目,选择一张图片然后静观其变。进度条渐进式的前进,你应该可以在控制台看到如下输出:

img

恭喜你,你已经成功的通过网络上传了一张图片了。

img

获取数据

将图片上传到Imagga之后,下一步则是从Imagga获取到它分析之后的标签数据了。在ViewController文件的扩展方法upload(image:progress:completion:):下添加以下代码:

func downloadTags(contentID: String, completion: @escaping ([String]) -> Void) {
  Alamofire.request(
    "http://api.imagga.com/v1/tagging",
    parameters: ["content": contentID],
    headers: ["Authorization": "Basic xxx"]
  )
  .responseJSON { response in
    guard response.result.isSuccess else {
      print("Error while fetching tags: \(response.result.error)")
      completion([String]())
      return
    }

guard let responseJSON = response.result.value as? [String: Any] else {
  print("Invalid tag information received from the service")
  completion([String]())
  return
}

print(responseJSON)
completion([String]())
  }
}

请再一次确认替换的Basic xxx是你自己账号的授权token。上述代码执行了一个对标签服务的GET请求,参数是通过上传成功后返回的一个ID。接着,我们回到upload(image:progress:completion:)方法,然后替换成功条件下的完成回调方法代码如下:

self.downloadTags(contentID: firstFileID) { tags in
  completion(tags, [PhotoColor]())
}

上述代码将获得到的标签数据通过完成回调函数返回给上级调用者。
编译然后运行整个项目,上传照片然后控制台会打印如下结果:
img

本教程里你不用在意返回结果里的confidence score是什么意思,只需要关心标签名称的数组即可。下一步,回到downloadTags(contentID:completion:)方法,然后替换里面的.responseJSON方法,代码如下:

// 1.
guard response.result.isSuccess else {
  print("Error while fetching tags: \(response.result.error)")
  completion([String]())
  return
}

// 2.
guard let responseJSON = response.result.value as? [String: Any],
  let results = responseJSON["results"] as? [[String: Any]],
  let firstObject = results.first,
  let tagsAndConfidences = firstObject["tags"] as? [[String: Any]] else {
    print("Invalid tag information received from the service")
    completion([String]())
    return
}

// 3.
let tags = tagsAndConfidences.flatMap({ dict in
  return dict["tag"] as? String
})

// 4.
completion(tags)

我们来逐步分解上面的代码:
1.检查返回结果是否成功,如果失败,打印错误信息,然后调用完成回调函数。
2.检查返回结果的每个部分,验证数据类型是否正确,从返回结果中获取tagsAndConfidences,如果解析失败,打印错误信息,然后调用完成回调函数。
3.遍历tagsAndConfidences数组里的每个字典对象,从中以tag作为key来提取对应的值。
4.将从服务器获取的标签数据返回给上层调用者。

注意:代码里使用Swift的flatMap方法来遍历数组里面的每个字典。这个方法在遍历到nil的值得时候并不会让程序crash掉,而是直接将这些nil值移除掉,然后只返回正确的结果。所以通过使用可选解包(as?)来验证字典中的值是否可以被转化成为字符串。
编译然后运行整个项目,上传一张图片,然后你可以在界面上看到如下效果:

img

纵享丝滑,Imagga不愧是一个智能的api。下一步,你将要获取的是图片的颜色。添加如下代码到ViewController中的downloadTags(contentID:completion:):方法下面:

 func downloadColors(contentID: String, completion: @escaping ([PhotoColor]) -> Void) {
  Alamofire.request(
    "http://api.imagga.com/v1/colors",
    parameters: ["content": contentID],
    // 1.
    headers: ["Authorization": "Basic xxx"]
  )
  .responseJSON { response in
    // 2.
    guard response.result.isSuccess else {
      print("Error while fetching colors: \(response.result.error)")
      completion([PhotoColor]())
      return
    }

// 3.
guard let responseJSON = response.result.value as? [String: Any],
  let results = responseJSON["results"] as? [[String: Any]],
  let firstResult = results.first,
  let info = firstResult["info"] as? [String: Any],
  let imageColors = info["image_colors"] as? [[String: Any]] else {
    print("Invalid color information received from service")
    completion([PhotoColor]())
    return
}

// 4.
let photoColors = imageColors.flatMap({ (dict) -> PhotoColor? in
  guard let r = dict["r"] as? String,
    let g = dict["g"] as? String,
    let b = dict["b"] as? String,
    let closestPaletteColor = dict["closest_palette_color"] as? String else {
      return nil
  }

  return PhotoColor(red: Int(r),
                    green: Int(g),
                    blue: Int(b),
                    colorName: closestPaletteColor)
})

// 5.
completion(photoColors)
  }
}

下面按照编号来依次解析:
1.确保Basic xxx是你自己账号所属的认证token。
2.检查返回结果是否成功,如果失败,打印错误信息,然后调用完成回调函数。
3.检查返回结果的每个部分,验证数据类型是否正确。从返回结果中获取imageColors,如果解析失败,打印错误信息,然后调用完成回调函数。
4.再次使用flatMap方法,对服务器返回的PhotoColors对象进行遍历,将里面的符合RGB格式的数据转换字符串,然后封装成PhotoColor对象。
5.调用完成回调函数,传入服务器返回的图片颜色数据。

最后,回到upload(image:progress:completion:)方法,然后替换掉成功条件下的调用完成回调函数:

self.downloadTags(contentID: firstFileID) { tags in
  self.downloadColors(contentID: firstFileID) { colors in
    completion(tags, colors)
  }
}

上述代码嵌套了上传图片,获取标签以及获取颜色的操作。
编译然后运行整个项目,这一次当你选择Colors按钮后,界面会有以下效果:

img

这块主要使用了映射到PhotoColor结构体的RGB颜色来渲染UI。你已经成功的往Imagga上传了一张图片,以及调用了2个不同的api来获取数据。你已经做得很不错了,但是在如何使用Alamofire上,我们还有改进的余地。

改进 PhotoTagger

你应该注意到了我们前面的代码中有许多重复代码。如果Imagga官方宣布废除掉v1版本的api,并推出v2版本的api。我们的应用将不再可用直到你将每个方法里面的URL都修改过来。同样的道理,如果你的Basic认证token发生了变化,那么你需要在所有用到的地方做出修改。
Alamofire提供了一个简单的方法来消除代码重复的问题并提供了集中式的配置方法。该技术涉及创建符合URLRequestConvertible协议的结构体,然后更新的上传和请求的方法。
创建一个新的Swfit文件,命名为ImaggaRouter.swift,然后在文件里替换成以下代码:

import Foundation
import Alamofire

public enum ImaggaRouter: URLRequestConvertible {
  static let baseURLPath = "http://api.imagga.com/v1"
  static let authenticationToken = "Basic xxx"

  case content
  case tags(String)
  case colors(String)

  var method: HTTPMethod {
    switch self {
    case .content:
      return .post
    case .tags, .colors:
      return .get
    }
  }

  var path: String {
    switch self {
    case .content:
      return "/content"
    case .tags:
      return "/tagging"
    case .colors:
      return "/colors"
    }
  }

  public func asURLRequest() throws -> URLRequest {
    let parameters: [String: Any] = {
      switch self {
      case .tags(let contentID):
        return ["content": contentID]
      case .colors(let contentID):
        return ["content": contentID, "extract_object_colors": 0]
      default:
        return [:]
      }
    }()

let url = try ImaggaRouter.baseURLPath.asURL()

var request = URLRequest(url: url.appendingPathComponent(path))
request.httpMethod = method.rawValue
request.setValue(ImaggaRouter.authenticationToken, forHTTPHeaderField: "Authorization")
request.timeoutInterval = TimeInterval(10 * 1000)

return try URLEncoding.default.encode(request, with: parameters)
  }
}

替换Basic xxx为你自己账号的认证Token。这个路由类通过提供三个不同的分类:.content, .tags(String),.colors(String)来实现创建多个URLRequest实例。现在你的重复代码都集中到了一个地方,如果有需要在这里更改即可。
回到ViewController.swift文件,然后替换upload(image:progress:completion:)方法:

Alamofire.upload(
  multipartFormData: { multipartFormData in
    multipartFormData.append(imageData,
                             withName: "imagefile",
                             fileName: "image.jpg",
                             mimeType: "image/jpeg")
  },
  to: "http://api.imagga.com/v1/content",
  headers: ["Authorization": "Basic xxx"],

替换为:

Alamofire.upload(
  multipartFormData: { multipartFormData in
  multipartFormData.append(imageData,
                           withName: "imagefile",
                           fileName: "image.jpg",
                           mimeType: "image/jpeg")
  },
  with: ImaggaRouter.content,

然后替换掉downloadTags(contentID:completion:)方法里的代码:

Alamofire.request(ImaggaRouter.tags(contentID))

最后,替换掉downloadColors(contentID:completion:)方法里的代码:

Alamofire.request(ImaggaRouter.colors(contentID))

编译然后运行项目,结果应与之前的效果保持一致。这意味着你已经在不破坏你的app的前提下完成了重构,干得漂亮!

接下来做什么?

所有的代码文件都上传到了github上,不要忘了替换你自己的Basic认证token。
这篇教程只涵盖到了非常基础的知识点。你可以去Alamofire的官方网站https://github.com/Alamofire/Alamofire上进行更深入的学习。
进一步的话,你可以花一些时间来学习Alamofire底层使用的AppleURLSession类的内容:

Stable Baselines3 是一个用于强化学习的Python库,它提供了训练和评估强化学习算法的工具。 要开始使用 Stable Baselines3,首先需要安装它。可以通过 pip 安装稳定的 Baselines3: ``` pip install stable-baselines3 ``` 安装完成后,我们可以导入所需的模块并开始构建我们的强化学习模型。 首先,我们需要选择一个适合我们任务的强化学习算法。Stable Baselines3 提供了多种算法,比如 A2C、PPO、SAC等。选择算法后,我们可以实例化一个模型对象。 ```python from stable_baselines3 import A2C model = A2C('MlpPolicy', 'CartPole-v1', verbose=1) ``` 在这个例子中,我们选择了 A2C 算法,并将其用于 CartPole-v1 的任务。 接下来,我们可以使用模型对象对算法进行训练。 ```python model.learn(total_timesteps=10000) ``` 这里我们使用了 learn 方法来训练模型,total_timesteps 参数指定了总的训练步数。 训练完成后,我们可以使用训练好的模型来进行评估。 ```python mean_reward, std_reward = evaluate_policy(model, 'CartPole-v1', n_eval_episodes=10) ``` 这里我们使用了 evaluate_policy 方法来评估模型的性能,n_eval_episodes 参数指定了评估时的回合数。 除了训练和评估,Stable Baselines3 还提供了其他功能,比如加载和保存模型、可视化训练过程等。 总的来说,使用 Stable Baselines3 进行强化学习任务非常方便。只需要选择适合的算法、构建模型对象、训练和评估模型,就可以快速地开展强化学习研究和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值