deep learning
u011144848
这个作者很懒,什么都没留下…
展开
-
神经网络-Neural Network 简介
基本结构 输入层 --> 隐藏层 --> 输出层 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20190519182927931.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMT...原创 2019-05-19 19:54:49 · 1048 阅读 · 0 评论 -
Logistic Regression
Logistic Regression定义loss function & cost function代价函数的解释极大似然估计的角度交叉熵CEH的角度求解求梯度定义对于一个样本x,模型模拟函数如下:y^=σ(wTx+b)\hat{y}=\sigma(w^Tx+b)y^=σ(wTx+b)σ(z)=11+e−z\sigma(z)=\frac 1{1+e^{-z}}σ(z)=1+e−z...原创 2019-05-22 15:21:01 · 240 阅读 · 0 评论 -
back propagation反向传播(浅层神经网络分析示例)
back propagation一个浅层的神经网络参数和中间变量解释前向传播反向传播代码示例一个浅层的神经网络上图是一个,3层的神经网络,2个隐藏层+1个输出层;输入层 特征维度为3。上图时一个神经元的结构,有一个线性函数 和 一个非线性的激活函数组成。z=wTxz=w^Txz=wTxa=σ(z)=1/(1+e−z)a=\sigma(z)= 1/(1+e^{-z})a=σ...原创 2019-05-23 15:18:02 · 387 阅读 · 0 评论 -
目标检测(一)
卷积神经网络结构发展历程,那些留下过名字的模型:LeNet ----> AlexNet ----> ZFNet —> VGGNet —> GoogleNet ---->ResNet ----> DenseNet每个经典的模型都提出创意性的概念:1、leNet :Gradient-Based Learning Applied to Documen...原创 2019-06-05 23:08:11 · 605 阅读 · 0 评论 -
目标检测(二)
目标检测是计算机视觉中一个传统的问题,基本流程可以看做:特征提取–> 模型训练(分类)–> 滑动窗口计算响应(可以做多尺度)---->非极大值 等基本步骤传统的目标检测方法:svm+hog, DPM等,这里就不详细解释了。卷积神经网络目标检测的发展:R-CNN —> fast R-CNN —> faster R-CNN ----->yolo —>s...原创 2019-06-06 01:29:18 · 303 阅读 · 0 评论 -
正则化regularization
正则化regulation欠拟合与过拟合L2 正则化(L2 regularization)dropout代码示例参考欠拟合与过拟合欠拟合:在训练集上准确率较小过拟合:表现为在训练集上准确率高,训练误差较小。而在测试集上准确率与训练集上的表现相差较远,测试误差较大。Bias-Variance:L2 正则化(L2 regularization)损失函数中加L2正则化项后:l′(W)...原创 2019-05-29 13:15:49 · 303 阅读 · 0 评论 -
优化方法
mini-batch 梯度下降1、为什么要使用mini-batch和batch相比,mini-batch计算开销较小、计算速度快,适应与大批量的数据集,支持在线学下。和 随机梯度下降相比,mini-batch更容易收敛,梯度下降的有效性较大。batch梯度下降如下图:momentum1、为什么使用Momentummini-batch gradient 中,每一个小批量的数据集都...原创 2019-05-29 15:07:40 · 192 阅读 · 0 评论 -
Tensorflow简单使用(一)
之前展示过只使用python、numpy构建简单的神经网络:前向传播、反向传播、链式法则求导等,有助于理解相关知识,但工程中是不可能这样做的。一些基本的概念1、常量 tf.constant```pythonimport tensorflow as tfa1 = tf.constant([1,2,3],tf.int32,name="a1")print(a1) # 打印:Tensor("...原创 2019-05-29 22:23:19 · 812 阅读 · 0 评论