案例:
我在某公司上班,我的内网ip地址是10.110.141.69,我需要访问生产数据库,现在需要开墙。
ip地址开墙,经常会碰到这样的写法:xxx.xxx.xxx.0/24,例如 10.110.141.0/24,这个好理解,前24位不变,后8位改变,即等同于 10.110.141.0 - 10.110.141.255 这些ip地址,从0到255。
但最近碰到一个新的写法:xxx.xxx.xxx.0/23。同理,即前23位不变。使用上面的例子即10.110.141.0/23,但会这样写:10.110.140.0/23。(区别在于141改为140)
解读:
ip地址是32位,总共4段,每段用“.”隔开,被称为“点分十进制表示法”,如:192.168.1.1
这里为了方便说明,把这4段命名为第一段,第二段,第三段,第四段。
xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx
第一段 第二段 第三段 第四段
以上面的案例为例:
10.110.141.0/24,是第四段可以为任意值,即0-255。
10.110.141.0/23,不仅第四段为任意值,第三段的最后一位也是任意值,即0或1。由于我的ip地址第三段是141,141转换成2进制最后一位肯定是1,若为0,即141减1,即140。所以就写成:
10.110.140.0/23
这个可以成为一个通用的二进制和十进制间的计算方式:
例如:
奇数 161,2进制的前7位不变的话,第8位为0的话,其实就是160。
偶数 150,2进制的前7位不变的话,第8位为0的话,其实就是150。
但如果是前6位不变,第7位和第8位为0,就需要转成2进制,看看第7位是不是1,如果是1的话,就减去2,如果是0,仍是原值。
128 64 32 16 8 4 2 1
以160为例,128加32,即第1位和第3位为1,那前6位不变,依然是160。 后2位可变,则数值的变化范围是160-163。
网关,子网掩码,广播地址,可用IP段对应表
常用网关,子网掩码,广播地址,可用IP段对照表 | |||||||
---|---|---|---|---|---|---|---|
【192.168.0.1可以 换成其它网段】 | 掩码二进制1 | 子网掩码 | 可用IP总数 | 网络地址 (全0网络号) | 可用IP范围 | 广播地址 (全1广播地址) | C段个数 |
192.168.0.1/30 | 30 (最后段6个1) | 255.255.255.252 | 4-2=2 | 192.168.0.0 | {192.168.0.1~192.168.0.2} | 192.168.0.3 | 1/64 |
/29 | 29 (最后段5个1) | 255.255.255.248 | 8-2 | .0 | {.1 ~ .6} | .7 | 1/32 |
/28 | 28 (最后段4个1) | 255.255.255.240 | 2^2-2= 16-2=14 | .0 | {.1 ~ .14} | .15 | 1/16 |
/27 | 27 (最后段3个1) | 255.255.255.224 | 32-2 | .0 | {.1 ~ .30} | .31 | 1/8 |
/26 | 26 (最后段2个1) | 255.255.255.192 | 2^6-2= 64-2 | .0 | {.1 ~ .62} | .63 | 1/4 |
/25 | 25 (最后段1个1) | 255.255.255.128 | 128-2 | .0 | {.1 ~ .126} | .127 | 1/2 |
/24 | 24 (最后段0个1) | 255.255.255.0 | 256-2 | .0 | {.1 ~ .254} | .255 | 1 |
/23 | 23 (倒2段7个1) | 255.255.254.0 | 2^9-2= 512-2 | .0.0 | {1.1~1.254} {0.1~0.255} | .1.255 | 2 |
/22 | 23 (倒2段6个1) | 255.255.252.0 | 2^10-2= 1024-2 | .0.0 | {3.1~3.254} {2.1~2.255} {1.1~1.255} {0.1~0.255} | .3.255 | 4 |
/21 | 23 (倒2段5个1) | 255.255.248.0 | 2^11-2= 2048-2 | .0.0 | {7.1~7.254} {6.1~6.255} …… {1.1~1.255} {0.1~0.255} | .7.255 | 8 |
/20 | 23 (倒2段4个1) | 255.255.240.0 | 2^12-2= 4096-2 | .0.0 | {15.1~15.254} {14.1~14.255} …… {1.1~1.255} {0.1~0.255} | .15.255 | 16 |
/19 | 23 (倒2段3个1) | 255.255.224.0 | 2^13-2= 8192-2 | .0.0 | {31.1~31.254} {30.1~30.255} …… {1.1~1.255} {0.1~0.255} | .31.255 | 32 |
/18 | 23 (倒2段2个1) | 255.255.192.0 | 2^14-2= 16384-2 | .0.0 | {63.1~63.254} {62.1~62.255} …… {1.1~1.255} {0.1~0.255} | .63.255 | 64 |
/17 | 23 (倒2段1个1) | 255.255.128.0 | 2^15-2= 32768-2 | .0.0 | {127.1~127.254} {126.1~126.255} …… {1.1~1.255} {0.1~0.255} | .127.255 | 128 |
/16 | 23 (倒2段0个1) | 255.255.0.0 | 2^16-2= 65536-2 | .0.0 | {255.1~255.254} {254.1~254.255} …… {1.1~1.255} {0.1~0.255} | .255.255 | 256 |