论文解读 | ERICA: Improving Entity and Relation Understanding for PLM via Contrastive Learning
单 位:燕山大学
作 者: 王 琴
摘要
预训练语言模型 (PLM) 能在各种下游自然语言处理 (NLP) 任务中表现出卓越的性能。然而,传统的预训练目标并没有明确地对文本中的关系进行建模,但这对于文本理解却至关重要。为了解决这个问题,作者提出了一种新颖的对比学习框架 ERICA,以深入了解文本中的实体及其关系。作者定义了两个新的预训练任务来更好地理解实体和关系:(1)实体判别任务,用于区分给定的头部实体和关系可以推断出哪个尾实体; (2)关系判别任务,在语义上区分两个关系是否接近,这涉及复
原创
2021-07-16 00:07:46 ·
846 阅读 ·
3 评论