HDU 5067 Harry And Dig Machine
思路:由于点才10个,在加上一个起点,处理出每个点之间的曼哈顿距离,然后用状压dp搞,状态表示为:
dp[i][s],表示在i位置,走过的点集合为s的最小代价
代码:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int N = 15;
int n, m;
struct Point {
int x, y;
Point() {}
Point(int x, int y) {
this->x = x;
this->y = y;
}
} p[N];
int pn;
int g[N][N];
int dp[N][(1<<13) + 5];
int dis(Point a, Point b) {
return abs(a.x - b.x) + abs(a.y - b.y);
}
const int INF = 0x3f3f3f3f;
int main() {
while (~scanf("%d%d", &n, &m)) {
pn = 0;
int a;
int flag = 0;
int zero;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &a);
if (a) {
p[pn++] = Point(i, j);
if (i == 0 && j == 0) {
flag = 1;
zero = pn - 1;
}
}
}
}
if (!flag) {
zero = pn;
p[pn++] = Point(0, 0);
}
for (int i = 0; i < pn; i++) {
for (int j = i; j < pn; j++) {
g[i][j] = g[j][i] = dis(p[i], p[j]);
}
}
for (int i = 0; i < pn; i++)
for (int j = 0; j < (1<<pn); j++)
dp[i][j] = INF;
dp[zero][0] = 0;
dp[zero][(1<<zero)] = 0;
int ss = (1<<pn);
for (int i = 0; i < ss; i++) {
for (int j = 0; j < pn; j++) {
if (i&(1<<j)) {
for (int k = 0; k < pn; k++) {
if (i&(1<<k)) {
dp[j][i] = min(dp[j][i], dp[k][i^(1<<j)] + g[j][k]);
}
}
}
}
}
int ans = INF;
for (int i = 0; i < pn; i++)
ans = min(ans, dp[i][(1<<pn) - 1] + g[zero][i]);
printf("%d\n", ans);
}
return 0;
}