hdu5067 Harry And Dig Machine(状压dp TSP裸题)

题意

TSP裸题

注意从左上角(0,0)出发

题解

挑战程序竞赛(二)

看懂题意就是一通板子

代码1(倒序)

#include <iostream>
#include <algorithm> 
#include <cstring>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#include <stack>
#include <queue>
#include <functional>
const int INF=0x3f3f3f3f;
const int maxn=1e4+10; 
const int mod=1e9+7;
const int MOD=998244353;
const double eps=1e-7;
typedef long long ll;
#define vi vector<int> 
#define si set<int>
#define pii pair<int,int> 
#define pi acos(-1.0)
#define pb push_back
#define mp make_pair
#define lowbit(x) (x&(-x))
#define sci(x) scanf("%d",&(x))
#define scll(x) scanf("%lld",&(x))
#define sclf(x) scanf("%lf",&(x))
#define pri(x) printf("%d",(x))
#define rep(i,j,k) for(int i=j;i<=k;++i)
#define per(i,j,k) for(int i=j;i>=k;--i)
#define mem(a,b) memset(a,b,sizeof(a)) 
using namespace std;
int n,m,dis[11][11],cnt;
int dp[1<<11][11];
struct node
{
	int x,y,num;
	node(){
	}
	node(int xx,int yy,int nn):x(xx),y(yy),num(nn){
	}
};
node e[15];
int cal(node a,node b)
{
	return abs(a.x-b.x)+abs(a.y-b.y);
}
void init()
{
	mem(dis,INF);
	cnt=0;
}
int main()
{ 
   while(~scanf("%d%d",&n,&m))
   {
   	init();
   	rep(i,0,n-1)
   	{
   		rep(j,0,m-1)
   		{
   			int num;
   			sci(num);
   			if(num||(i==0&&j==0))
   			{
   			  e[cnt++]=node(i,j,num);	
   			}
   		}
   	}
   	rep(i,0,cnt-1)
   	{
   		dis[i][i]=0;
   		rep(j,i+1,cnt-1)
   		{
   			dis[i][j]=dis[j][i]=cal(e[i],e[j]);
   		}
   	}
   	rep(s,0,(1<<cnt)-1)fill(dp[s],dp[s]+cnt,INF);
   	dp[(1<<cnt)-1][0]=0;
   	per(s,(1<<cnt)-2,0)
   	{
   		rep(i,0,cnt-1)//若i不在s里 势必会使答案更大而不影响 并且用只用dp[s|(1<<j)][j] 
   		{
   			rep(j,0,cnt-1) 
   			{
   				if(!((s>>j)&1))//j还没访问过 去j 现在在i 
				 dp[s][i]=min(dp[s][i],dp[s|(1<<j)][j]+dis[i][j]); 
   			}
   		}
   	}
   	printf("%d\n",dp[0][0]);
   }
   return 0;
}

代码2(正序 WA-6 )

我以后再也不写正序的TSP了

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=12;
const int INF=0x3f3f3f3f;
typedef pair<int,int> P;
int n,m;
int v;
int dis[maxn][maxn];
int dp[1<<maxn][maxn],cnt;
//dp[当前已去][当前所在] 
P num[maxn];
int cal(P a,P b)
{
	return abs(a.first-b.first)+abs(a.second-b.second);
}
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
	 cnt=0;
	 memset(dis,INF,sizeof(dis));
	 memset(dp,INF,sizeof(dp));
	 for(int i=0;i<n;++i)
	 {
		for(int j=0;j<m;++j)
		{
		 scanf("%d",&v);
		 if(v||(!i&&!j))num[cnt++]=P(i,j);
	    }
	 }
	 if(cnt==1)
	 {
	 	puts("0");
	 	continue;
	 }
	 swap(num[0],num[cnt-1]);
	 for(int i=0;i<cnt;++i)
	 {
	 	dis[i][i]=0;
	 	for(int j=i+1;j<cnt;++j)
	 	{
	 		dis[i][j]=dis[j][i]=cal(num[i],num[j]);
	 	}
	 }
	 dp[0][cnt-1]=0;
     //应该最后一次回自己 故最后更新自己 放在最高位 不然先更新自己的话 相当于最后没回自己
     //显然111能从011转移过来 如果放在低位1 011从001转移过来时就没有考虑回到自己 因为001==0
     //最后导致111没考虑回到自己
     //而放在高位的话 011不会从100转移过来 111考虑110和101的时候 也是考虑的非自己的位
     //然后正着的写法还要特判cnt==1的情况 上一个的写法前提得有上一个 只有左上角有石头就没有前驱
     //而倒着的写法是考虑下一个 
	 for(int i=1;i<(1<<cnt);++i)
	 {
	 	for(int j=0;j<cnt;++j)//当前在哪 
	 	{ 
	 	    if(!(i&(1<<j)))continue;//如果这个没有j 
	 		for(int k=0;k<cnt;++k)//上一个在哪
			{
				if(!(i&~(1<<j))&(1<<k))continue;//如果上一个没有k 
				dp[i][j]=min(dp[i][j],dp[i&~(1<<j)][k]+dis[k][j]);
			} 
			//printf("%d,pos:(%d,%d) %d\n",i,num[j].first,num[j].second,dp[i][j]); 
	 	}
	 }
	 printf("%d\n",dp[(1<<cnt)-1][cnt-1]);
    }
	return 0;
} 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道是一道经典的斜率优化dp目,需要用到单调队列的思想。 目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道目。 首先,让我们看一下该目的描述。目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在态设计上走一些弯路。 我们来看一下态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该目的解思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问可以用斜率优化DP解决。 首先,我们需要了解原问的含义。问描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问。记$f_i$为到前$i$个人的最小体力消耗,那么态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问的时候,斜率优化DP可以很好地解决问

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Code92007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值