POJ 1821 Fence(DP+单调队列优化)

题意:n个栅栏,m个工人,每个工人在位置s,能刷的长度为l,赚的钱为p,问怎么安排使得赚钱最大

思路:先按工人位置排序,然后dp[i][j]表示i个工人刷了j个栅栏的最大值,那么这个转移dp[i][j] = max(dp[i - 1][k] + cost[i] * (j - k),时间复杂度有点无法接受,需要进行优化,

把状态转移进行转化,dp[i - 1][k] - cost[i] * k + cost[i][j],在枚举i,j的时候,后面那个值相当于一个常数,那么利用一个单调队列,把前面那部份的值,边枚举边维护下来,这样每次取就只是O(1)的复杂度了

代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;

const int N = 105;
const int M = 16005;
const int INF = 0x3f3f3f3f;

int n, m;
int l, p[N], s;
int dp[N][M];

struct Work {
    int l, p, s;
    void read() {
	scanf("%d%d%d", &l, &p, &s);
    }
} work[N];

bool cmp(Work a, Work b) {
    return a.s < b.s;
}

int Q[M];

int main() {
    while (~scanf("%d%d", &m, &n)) {
	for (int i = 1; i <= n; i++) work[i].read();
	sort(work + 1, work + n + 1, cmp);
	for (int i = 1; i <= n; i++) {
	    l = work[i].l; p[i] = work[i].p; s = work[i].s;
	    int head = 0, rear = 0;
	    Q[rear++] = max(s - l, 0);
	    for (int j = 1; j <= m; j++) {
		dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
		if (j >= s + l) continue;
		while (head < rear && Q[head] + l < j)
		    head++;
		if (j < s) {
		    int tmp = dp[i - 1][j] - j * p[i];
		    while (head < rear && dp[i - 1][Q[rear - 1]] - Q[rear - 1] * p[i] < tmp)
			rear--;
		    Q[rear++] = j;
		    continue;
		}
		dp[i][j] = max(dp[i][j], dp[i - 1][Q[head]] + p[i] * (j - Q[head]));
	    }
	}
	printf("%d\n", dp[n][m]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值