【RASA】DIET:Dual Intent and Entity Transformer

本文介绍了Rasa的DIETClassifier,一种用于意图分类和实体识别的多任务架构。DIET能结合预训练语言模型的嵌入与稀疏特征,即使没有预训练嵌入也能取得优秀效果。实验表明,DIET在速度和性能上优于微调过的BERT,并在多个NLU数据集上表现出色。文章详细解析了DIET的Featurization、Transformer、NER、Intent Classification和Masking等组件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重磅专栏推荐:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

最近工作中使用到rasa,其nlu部分有一个rasa自己提出的DIETClassifier框架组建,可用于意图分类与实体识别。今天有空,就来研究下它~

论文地址:https://github.com/RasaHQ/DIET-paper

1. 简介

先总结下DIET出彩的地方:

  • DIET是一种用于意图分类和实体识别的多任务体系结构。
  • 它能够以即插即用的方式结合语言模型的预训练单词嵌入,并将它们与单词和字符级 n-gram 稀疏特征结合起来。
  • 实验表明,即使没有预训练的嵌入,仅使用单词和字符级 n-gram 稀疏特征,DIET 仍可以在复杂 NLU 数据集上取得state of art的结果。<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值